scholarly journals Electronic Structure and High Magnetic Properties of (Cr, Co)-codoped 4H–SiC Studied by First-Principle Calculations

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 634
Author(s):  
Mengyu Zhang ◽  
Jingtao Huang ◽  
Xiao Liu ◽  
Long Lin ◽  
Hualong Tao

The electronic structure and magnetic properties of 3d transition metal (Cr, Co)-codoped 4H–SiC were studied by density functional theory within GGA methods. The results show that all doped magnetic atoms have high magnetic properties in both Cr-doped and Co-doped 4H–SiC, resulting in the net magnetic moments of 3.03, 3.02 μ B for Si 35 CrC 36 and Si 35 CoC 36 . The electronic density of states reaches the peak at Fermi level, which is beneficial to the electronic transitions, indicating that Cr-doped 4H–SiC is a semi-metallic material. In addition, the magnetic properties of (Cr, Co)-codoped 4H–SiC were also calculated. The results show that the (Cr, Co)-codoped 4H–SiC system has more stable ferromagnetic properties with ΔE F M of −244.3 meV, and we estimated T C of about 470.8 K for the (Cr, Co)-codoped 4H–SiC system. The (Cr, Co)-codoped 4H–SiC can be ferromagnetic through some mechanism based on hybridization between local Cr:3d, Co:3d and C:2p states. These interesting discoveries will help promote the use of excellent SiC-based nanomaterials in spintronics and multi-function nanodevices in the near future.

1995 ◽  
Vol 384 ◽  
Author(s):  
Zhi-Qiang Li ◽  
Yuichi Hashi ◽  
Jing-Zhi Yu ◽  
Kaoru Ohno ◽  
Yoshiyuki Kawazoe

ABSTRACTThe electronic structure and magnetic properties of rhodium clusters with sizes of 1 - 43 atoms embedded in the nickel host are studied by the first-principles spin-polarized calculations within the local density functional formalism. Single Rh atom in Ni matrix is found to have magnetic moment of 0.45μB. Rh13 and Rhl 9 clusters in Ni matrix have lower magnetic moments compared with the free ones. The most interesting finding is tha.t Rh43 cluster, which is bulk-like nonmagnetic in vacuum, becomes ferromagnetic when embedded in the nickel host.


2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


2017 ◽  
Vol 19 (36) ◽  
pp. 24594-24604 ◽  
Author(s):  
Jing Pan ◽  
Rui Wang ◽  
Xiaoyu Zhou ◽  
Jiansheng Zhong ◽  
Xiaoyong Xu ◽  
...  

The electronic structure, magnetic properties and stability of transition-metal (TM) doped armchair MoS2 nanoribbons (AMoS2NRs) with full hydrogen passivation have been investigated using density functional theory.


2014 ◽  
Vol 28 (14) ◽  
pp. 1450111 ◽  
Author(s):  
L. Hua ◽  
Q. L. Zhu

In this paper, we have investigated the electronic structure and magnetic properties of K and Mn co-doped BaCd 2 As 2 using density functional theory within the generalized gradient approximation ( GGA ) + U schemes. Calculations show that the ground state magnetic structure of Mn -doped BaCd 2 As 2 is antiferromagnetic while K and Mn co-doped BaCd 2 As 2 is ferromagnetic. Electronic structures indicate that the superexchange mechanism leads to the antiferromagnetic coupling between Mn atoms in Mn -doped BaCd 2 As 2 while the hole-mediated Zener's p–d exchange mechanism leads to the ferromagnetic coupling between Mn atoms in K and Mn co-doped BaCd 2 As 2.


2011 ◽  
Vol 22 (04) ◽  
pp. 359-369
Author(s):  
M. SAMAH ◽  
B. MOULA

The lowest-energy geometric and isomers of freestanding Co n clusters (n = 2 - 10) and their corresponding magnetic moments have been studied using the Siesta code based on pseudopotential density-functional theory. The calculated results show that there are many isomers near the ground state. Different isomers hold different magnetic moment. The stability study shows that among the investigated clusters, the hexamer one is the most stable and is the magic cluster. Dissociation channels energy are also studied.


2015 ◽  
Vol 754-755 ◽  
pp. 757-761
Author(s):  
Abdullah Chik ◽  
S. Saad ◽  
Cheow Keat Yeoh ◽  
R.M. Zaki ◽  
F. Che Pa

The electronic structure of the perovskite manganites AlMnO3cubic crystal was presented. The calculations were made within density functional theory and PBE exchange correlations energy approximation. It was found that the crystal exhibit covalent bonding between Mn and O with superexchange mechanism. At groundstate, AlMnO3stabilizes in antiferromagnetic structure with semi metallic like nature at the ground state.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
L. Mikaeilzadeh ◽  
A. Tavana ◽  
F. Khoeini

AbstractIn this works, we study the electronic structure and magnetic properties of the Pr-Ni-Bi half-Heusler systems based on density functional theory. We use the σ GGA + U scheme to consider the effects of on-site electron-electron interactions. Results show that in contrast to the rough estimation of the total magnetic moment of the unit cell, based on the Slater-Pauling behavior in the half-Heusler systems, this system has an antiferromagnetic ground state because of the localized Pr-f electrons. By increasing the magnitude of the effective U parameter, band-inversion occurs in the band structure of this system, which shows the possibility of topological state occurrence.


2010 ◽  
Vol 24 (08) ◽  
pp. 967-978 ◽  
Author(s):  
JINGSHAN QI ◽  
HAILIN YU ◽  
XUEFAN JIANG ◽  
DANING SHI

We present a comprehensive investigation of the equilibrium structural, electronic and magnetic properties of C o2 MnSi and C o2 FeSi by density-functional theory (DFT) within the generalized gradient approximation (GGA) using the projected augmented wave (PAW) method. The on-site Coulomb interaction has also taken into account ( GGA +U) approach to unravel the correlation effects on the electronic structure. The change of the energy gap, "spin gap", Fermi energy level and magnetic moments with the lattice parameters is investigated. We found that the on-site correlation interaction in C o2 FeSi is stronger than in C o2 MnSi . So on-site electronic correlation is necessary for C o2 FeSi and the magnetic moments reproduce experimental results well by GGA +U. Further we also found that a moderate change of the lattice parameters does not change the half-metallic ferromagnet (HMF) behavior for both materials. Appearance of half-metallicity is consistent with the integral magnetic moments, which also agrees with the experiment measurements.


Sign in / Sign up

Export Citation Format

Share Document