scholarly journals Microwave-Assisted vs. Conventional Hydrothermal Synthesis of MoS2 Nanosheets: Application towards Hydrogen Evolution Reaction

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1040 ◽  
Author(s):  
Getachew Solomon ◽  
Raffaello Mazzaro ◽  
Vittorio Morandi ◽  
Isabella Concina ◽  
Alberto Vomiero

Molybdenum sulfide (MoS2) has emerged as a promising catalyst for hydrogen evolution applications. The synthesis method mainly employed is a conventional hydrothermal method. This method requires a longer time compared to other methods such as microwave synthesis methods. There is a lack of comparison of the two synthesis methods in terms of crystal morphology and its electrochemical activities. In this work, MoS2 nanosheets are synthesized using both hydrothermal (HT-MoS2) and advanced microwave methods (MW-MoS2), their crystal morphology, and catalytical efficiency towards hydrogen evolution reaction (HER) were compared. MoS2 nanosheet is obtained using microwave-assisted synthesis in a very short time (30 min) compared to the 24 h hydrothermal synthesis method. Both methods produce thin and aggregated nanosheets. However, the nanosheets synthesized by the microwave method have a less crumpled structure and smoother edges compared to the hydrothermal method. The as-prepared nanosheets are tested and used as a catalyst for hydrogen evolution results in nearly similar electrocatalytic performance. Experimental results showed that: HT-MoS2 displays a current density of 10 mA/cm2 at overpotential (−280 mV) compared to MW-MoS2 which requires −320 mV to produce a similar current density, suggesting that the HT-MoS2 more active towards hydrogen evolutions reaction.

RSC Advances ◽  
2015 ◽  
Vol 5 (109) ◽  
pp. 89389-89396 ◽  
Author(s):  
S. Muralikrishna ◽  
K. Manjunath ◽  
D. Samrat ◽  
Viswanath Reddy ◽  
T. Ramakrishnappa ◽  
...  

Herein, we have designed and synthesized highly electocatalytically active 2D MoS2 nanosheets (NS), by a facile hydrothermal method, for hydrogen evolution reaction (HER).


2016 ◽  
Vol 09 (05) ◽  
pp. 1650058 ◽  
Author(s):  
Huaping Wu ◽  
Ye Qiu ◽  
Junma Zhang ◽  
Guozhong Chai ◽  
Congda Lu ◽  
...  

The composites of sulphide and reduced graphene oxide (NiS/MoS2-rGO) were synthesized through a facile solvent-assisted hydrothermal method. The introduction of NiS was paramount not only in enhancing the conductivity of whole catalysts but also in modulating the layer structures of MoS2 with additional active sites. Moreover, the NiS and rGO functioned together in controlling the morphology of as-prepared composites, resulting in uniformly distributed NiS/MoS2 nanosheets perpendicular to rGO scaffold. This further contributed to the excellent hydrogen evolution performance of the composites with a small onset overpotential of 80[Formula: see text]mV and Tafel slope as low as 65[Formula: see text]mV/decade.


2010 ◽  
Vol 20 (9) ◽  
pp. 1683-1690 ◽  
Author(s):  
Anukorn Phuruangrat ◽  
Dong Jin Ham ◽  
Suk Joon Hong ◽  
Somchai Thongtem ◽  
Jae Sung Lee

CrystEngComm ◽  
2022 ◽  
Author(s):  
Wei Zhan ◽  
Nan Li ◽  
Shixiang Zuo ◽  
Zhimin Guo ◽  
Chenghong Qiang ◽  
...  

Herein, cubic RuSe2 electrocatalysts with different 1T phase ratios (ranging from 20.53% to 64.97%) and crystallinities (ranging from 1.72% to 89.10%) were developed by a fast and efficient microwave-assisted synthesis method.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3876
Author(s):  
Jesús Valdés ◽  
Daniel Reséndiz ◽  
Ángeles Cuán ◽  
Rufino Nava ◽  
Bertha Aguilar ◽  
...  

The effect of microwave radiation on the hydrothermal synthesis of the double perovskite Sr2FeMoO6 has been studied based on a comparison of the particle size and structural characteristics of products from both methods. A temperature, pressure, and pH condition screening was performed, and the most representative results of these are herein presented and discussed. Radiation of microwaves in the hydrothermal synthesis method led to a decrease in crystallite size, which is an effect from the reaction temperature. The particle size ranged from 378 to 318 nm when pH was 4.5 and pressure was kept under 40 bars. According to X-ray diffraction (XRD) results coupled with the size-strain plot method, the product obtained by both synthesis methods (with and without microwave radiation) have similar crystal purity. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) techniques showed that the morphology and the distribution of metal ions are uniform. The Curie temperature obtained by thermogravimetric analysis indicates that, in the presence of microwaves, the value was higher with respect to traditional synthesis from 335 K to 342.5 K. Consequently, microwave radiation enhances the diffusion and nucleation process of ionic precursors during the synthesis, which promotes a uniform heating in the reaction mixture leading to a reduction in the particle size, but keeping good crystallinity of the double perovskite. Precursor phases and the final purity of the Sr2FeMoO6 powder can be controlled via hydrothermal microwave heating on the first stages of the Sol-Gel method.


RSC Advances ◽  
2015 ◽  
Vol 5 (44) ◽  
pp. 34761-34768 ◽  
Author(s):  
B. Nageswara Rao ◽  
P. Ramesh Kumar ◽  
O. Padmaraj ◽  
M. Venkateswarlu ◽  
N. Satyanarayana

Porous α-Fe2O3 nanostructures were developed in the presence of a base catalyst by a rapid microwave assisted hydrothermal method.


Sign in / Sign up

Export Citation Format

Share Document