scholarly journals La1–yBayF3–y Solid Solution Crystals as an Effective Solid Electrolyte: Growth and Properties

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 629
Author(s):  
Irina I. Buchinskaya ◽  
Denis N. Karimov ◽  
Nikolay I. Sorokin

A series of nonstoichiometric La1–yBayF3–y (0 ≤ y ≤ 0.12) single crystals with a tysonite-type structure (sp. gr. P-3c1) was grown from the melt by the directional crystallization method in a fluorinating atmosphere, and some physical properties were characterized. The concentration dependence of electrical conductivity σdc(y) La1–yBayF3–y crystals was studied. The composition of the ionic conductivity maximum for this solid electrolyte was refined. It was confirmed that the maximum conductivity σmax = 8.5 × 10–5 S/cm (295 K) was observed at the composition ymax = 0.05 ± 0.01. Analysis of the electrophysical data for the group of tysonite-type solid electrolytes R1–yMyF3–y (M = Ca, Sr, Ba, Eu2+ and R = La, Ce, Pr, Nd) showed that the compositions of the maxima of their conductivity were close and amount to y = 0.03−0.05. This fact indicates a weak influence of the size effect (ionic radii R3+ and M2+) on the value of ymax for R1–yMyF3–y solid electrolytes.

1990 ◽  
Vol 210 ◽  
Author(s):  
I. Riess ◽  
R. Safadi

AbstractWe describe a method for a simultaneous measurement of the total and electronic conductivities of solid electrolytes (SE). The total conductivity is determined by a four probe method and the electronic (electron/hole) conductivity is determined simultaneously by a two probe method, for samples having the van—der—Pauw configuration.


2018 ◽  
Vol 210 ◽  
pp. 55-67
Author(s):  
Joseph Martinez ◽  
David Ashby ◽  
Cheng Zhu ◽  
Bruce Dunn ◽  
Lane A. Baker ◽  
...  

The ionic conductivity of silica ionogel based solid electrolyte on meso and nanoscales is measured.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850029 ◽  
Author(s):  
Shiying Qin ◽  
Xiaohong Zhu ◽  
Yue Jiang ◽  
Ming’en Ling ◽  
Zhiwei Hu ◽  
...  

A large number of pores and a low relative density that are frequently observed in solid electrolytes reduce severely their ionic conductivity and thus limit their applicability. Here, we report on the use of hot isostatic pressing (HIP) for ameliorating the garnet-type lithium-ion conducting solid electrolyte of Ga2O3-doped Li7La3Zr2O[Formula: see text] (Ga-LLZO) with nominal composition of Li[Formula: see text]Ga[Formula: see text]La3Zr2O[Formula: see text]. The Ga-LLZO pellets were conventionally sintered at 1075[Formula: see text]C for 12[Formula: see text]h, and then were followed by HIP treatment at 120[Formula: see text]MPa and 1160[Formula: see text]C under an Ar atmosphere. It is found that the HIP-treated Ga-LLZO shows an extremely dense microstructure and a significantly enhanced ionic conductivity. Coherent with the increase in relative density from 90.5% (untreated) to 97.5% (HIP-treated), the ionic conductivity of the HIP-treated Ga-LLZO reaches as high as [Formula: see text][Formula: see text]S/cm at room temperature (25[Formula: see text]C), being two times higher than that of [Formula: see text][Formula: see text]S/cm for the untreated one.


2021 ◽  
pp. 2140002
Author(s):  
Mingxia Fan ◽  
Xiangyu Deng ◽  
Anqiao Zheng ◽  
Songdong Yuan

NASICON-type Li[Formula: see text]Al[Formula: see text]Ti[Formula: see text](PO[Formula: see text] (LATP) solid electrolytes have been widely studied because of its stability in the air, low material price and high ionic conductivity. Gd-doped Li[Formula: see text]Al[Formula: see text]Gd[Formula: see text]Ti[Formula: see text](PO[Formula: see text] ([Formula: see text]= 0, 0.025, 0.05, 0.075 and 0.1) with high ionic conductivity was successfully synthesized by solvothermal method for the first time in this work. The effect of Gd doping content on the structure and electrochemical performance of solid electrolytes was systematically studied. The optimal doping content of Gd is [Formula: see text]= 0.075. With the Gd doping content of 0.075, the solid electrolyte has the highest ionic conductivity of 4.23 × 10[Formula: see text] S cm[Formula: see text] at room temperature, the lowest activation energy of 0.247 eV and the highest relative density of 94.89%. This is because the fact that when [Formula: see text]= 0.075, it is the maximum content of Gd[Formula: see text] to replace Al[Formula: see text] and can completely enter the lattice of LATP, and does not emerge too much non-lithium ion conductive GdPO4 phase.


Nanoscale ◽  
2021 ◽  
Author(s):  
Han Wang ◽  
Genfu Zhao ◽  
Shimin Wang ◽  
Dangling Liu ◽  
Zhi-Yuan Mei ◽  
...  

NASICON-type Na3Zr2Si2PO12 (NZSP) is supposed to be one of the most potential solid electrolytes with the characteristics of high ionic conductivity and safety for solid-state sodium batteries. Many methods have...


2015 ◽  
Vol 3 (24) ◽  
pp. 12992-12999 ◽  
Author(s):  
Vinay S. Kandagal ◽  
Mridula Dixit Bharadwaj ◽  
Umesh V. Waghmare

The theoretically predicted compound Na10GeP2S12 exhibits Na-ionic conductivity of the same order of magnitude as that of other state-of-the-art solid electrolytes used in practical sodium batteries such as high-temperature sodium–sulfur batteries.


2020 ◽  
Author(s):  
Y.G. Hoo ◽  
Jianzhong Xiao ◽  
Feng Xia

Abstract The phase composition design principle is introduced to obtain a balanced properties of ionic conductivity and thermo-tolerant for zirconia solid electrolyte used in solid oxide fuel cells (SOFCs). The zirconia ceramic solid electrolytes were fabricated by two-step sintering. With increasing Y/Mg ionic ratio from 1.78:1 to 1.88:1, the content of monoclinic phase was not fluctuated widely. The ionic conductivity, including the total electrical resistance; grain electrical resistance and grain boundary electrical resistance at 1223K, was gradually declining with increasing of Y/Mg ionic ratio. Furthermore, the enrichment of Mg ion in grain boundary acts as a disincentive to grain boundary ionic conductivity. In addition, the maximum ionic conductivity at high temperature in this study reaches to 0.143 Scm-1 with increase of the Y/Mg ion ratio.


MRS Advances ◽  
2017 ◽  
Vol 3 (23) ◽  
pp. 1301-1307 ◽  
Author(s):  
Bo Wang

ABSTRACTLithium solid electrolyte with NASICON structure in the form of Li1+2xAlxTi2−xSixP3−xO12 solid solution has been prepared by high temperature solid state reaction using low cost kaolin as the starting material. The crystal structure of the solid solution was investigated by powder X-ray diffraction. The AC impedance measurements indicate that ionic conductivity increased by more than one order of magnitude when a small amount of Al3+ and Si4+ ions were incorporated into the LiTi2(PO4)3 crystal structure. The significant improvement on ionic conductivity can be attributed to the increased interstitial Li+ ions in the crystal structure. The highest ionic conductivity was found in Li1.2Al0.1Ti1.9Si0.1P2.9O12: 8.3 x 10-5 S·cm-1 at room temperature (21°C) and 1.5 x 10-3 S·cm-1 at 100°C.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3559
Author(s):  
Jinhua Hong ◽  
Shunsuke Kobayashi ◽  
Akihide Kuwabara ◽  
Yumi H. Ikuhara ◽  
Yasuyuki Fujiwara ◽  
...  

Solid electrolytes, such as perovskite Li3xLa2/1−xTiO3, LixLa(1−x)/3NbO3 and garnet Li7La3Zr2O12 ceramic oxides, have attracted extensive attention in lithium-ion battery research due to their good chemical stability and the improvability of their ionic conductivity with great potential in solid electrolyte battery applications. These solid oxides eliminate safety issues and cycling instability, which are common challenges in the current commercial lithium-ion batteries based on organic liquid electrolytes. However, in practical applications, structural disorders such as point defects and grain boundaries play a dominating role in the ionic transport of these solid electrolytes, where defect engineering to tailor or improve the ionic conductive property is still seldom reported. Here, we demonstrate a defect engineering approach to alter the ionic conductive channels in LixLa(1−x)/3NbO3 (x = 0.1 ~ 0.13) electrolytes based on the rearrangements of La sites through a quenching process. The changes in the occupancy and interstitial defects of La ions lead to anisotropic modulation of ionic conductivity with the increase in quenching temperatures. Our trial in this work on the defect engineering of quenched electrolytes will offer opportunities to optimize ionic conductivity and benefit the solid electrolyte battery applications.


Sign in / Sign up

Export Citation Format

Share Document