scholarly journals Mobility of Small Molecules in Solid Polymer Film for π-Stacked Crystallization

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1022
Author(s):  
Yue Liu ◽  
Xinping Zhang

Crystallization or π-stacked aggregation of small molecules is an extensively observed phenomenon which favors charge transport along the crystal axis and is important for the design of organic optoelectronic devices. Such a process has been reported for N,N’-Bis(1-ethylpropyl)-3,4,9,10-perylenebis(dicarboximide) (EPPTC). However, the π-stacking mechanism requires solution–air or solution–solid interfaces. The crystallization or aggregation of molecules doped in solid films is generally thought to be impossible, since the solid environment surrounding the small molecules does not allow them to aggregate together into π-stacked crystals. In this work, we demonstrate that the movement of the EPPTC molecules becomes possible in a solid polymer film when it is heated to above the glass transition temperature of the polymer. Thus, crystal particles can be produced as a doped matrix in a thin solid film. The crystallization process is found to be strongly dependent on the annealing temperature and the annealing time. Both the microscopic and spectroscopic evaluations verify such discoveries and characterize the related properties of these crystals.

2020 ◽  
Vol 8 (27) ◽  
pp. 13501-13508 ◽  
Author(s):  
Jun Tae Kim ◽  
Jihoon Lee ◽  
Soyeong Jang ◽  
Zhongkai Yu ◽  
Jong Hyun Park ◽  
...  

The coated QPSMs form the interfacial dipole between the active layer and the cathode, which can induce the tuned WF of Al, leading to the enhanced electron transport in OSCs and OLEDs.


2021 ◽  
Vol 7 (16) ◽  
pp. eabf8555
Author(s):  
Zhongwu Wang ◽  
Hongzhen Lin ◽  
Xi Zhang ◽  
Jie Li ◽  
Xiaosong Chen ◽  
...  

Interface stresses are pervasive and critical in conventional optoelectronic devices and generally lead to many failures and reliability problems. However, detection of the interface stress embedded in organic optoelectronic devices is a long-standing problem, which causes the unknown relationship between interface stress and organic device stability (one key and unsettled issue for practical applications). In this study, a kind of previously unknown molecular conformation–induced stress is revealed at the organic embedded interface through sum frequency generation (SFG) spectroscopy technique. This stress can be greater than 10 kcal/mol per nm2 and is sufficient to induce molecular disorder in the organic semiconductor layer (with energy below 8 kcal/mol per nm2), finally causing instability of the organic transistor. This study not only reveals interface stress in organic devices but also correlates instability of organic devices with the interface stress for the first time, offering an effective solution for improving device stability.


2021 ◽  
Vol 314 ◽  
pp. 3-8
Author(s):  
Noel Giebink

Organic optoelectronic devices such as light-emitting diodes and solar cells present unique challenges for surface cleaning and preparation because of their large area and the ‘soft’, thin film nature of the materials involved. This paper gives an introduction to this class of semiconductor devices and covers a recent example of how surface cleaning impacts the long-term reliability of organic light-emitting diodes being commercialized for solid-state lighting.


2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


2021 ◽  
Author(s):  
Yuxin GUAN ◽  
Wenjing LIN ◽  
Qiannan WANG ◽  
Pengchao ZHOU ◽  
Bin WEI ◽  
...  

The appropriate hosts of emitting layers (EMLs) play an important role in determining the overall performance of solution-processed phosphorescent organic light emitting diodes (PhOLEDs). We have investigated the effect of three species of host molecules, 1,3-bis(carbazol-9-yl)benzene (mCP), 10-(4-(5,5dimethylbenzofuro[3,2-c]acridin-13(5H)-yl)phenyl)-10-phenylanthracen-9(10H)-one (DpAn-5BzAc) and poly(9-vinylcarbazole) (PVK), on the performance of solution-processed blue and yellow PhOLEDs. We have found that compared to the widely used single-host EMLs, the devices using the binary blend of mCP: DpAn5BzAc as hosts, can achieve more efficient optoelectrical characteristics. The maximum current efficiencies of 11.84 and 16.61 have been realized for blue and yellow OLEDs, respectively. The superior electroluminescence performance for binary blend host-based PhOLEDs was attributed to the enhanced charge carrier balance and multi-component miscibility, which has a dramatic influence on the morphology of the emissive layer. These results demonstrate the great potential of the multi-hosts in solution-processed organic optoelectronic devices. The development of complementary colour OLEDs with blue and yellow can provide a simple approach to fabricate solution-processed white PhOLEDs.


Sign in / Sign up

Export Citation Format

Share Document