scholarly journals Environmental and Socioeconomic Impact of Copper Slag—A Review

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1504
Author(s):  
Tlotlo Solomon Gabasiane ◽  
Gwiranai Danha ◽  
Tirivaviri A. Mamvura ◽  
Tebogo Mashifana ◽  
Godfrey Dzinomwa

Copper slag is generated when copper and nickel ores are recovered from their parent ores using a pyrometallurgical process, and these ores usually contain other elements which include iron, cobalt, silica, and alumina. Slag is a major problem in the metallurgical industries as it is dumped into heaps which have accumulated into millions of tons over the years. Moreover, they pose a danger to the environment as they occupy vacant land (space problems). Over the past few years, studies have been conducted to investigate the copper slag-producing outlets to learn their behavior, as well as properties of slag, to have the knowledge of how to better reuse and recycle copper slag. This review article provides the environmental and socioeconomic impacts of slag, as well as a characterization of copper slag, with the aim of reusing and recycling the slag to benefit the environment and economy. Recycling methods are considered an attractive technological pathway for reducing waste and greenhouse gas emissions, as well as promoting the concept of circular economy through the utilization of waste. These metal elements have value depending on their characteristics; hence, copper slag is considered as a secondary source of valuable metals. Some of the pyrometallurgical and hydrometallurgical processes to consider are physical separation, magnetic separation, flotation, leaching, and direct reduction roasting of iron (DRI). Some of the possible metals that can be recovered from the copper slag include Cu, Fe, Ni, Co, and Ag (precious metals).

2019 ◽  
Vol 55 (3) ◽  
pp. 343-349
Author(s):  
U. Erdenebold ◽  
C.-M. Sung ◽  
J.-P. Wang

Gold flotation concentrate may contain relatively high concentrations of valuable metals such as iron, copper, and zinc, and occasionally, even precious metals such as gold. The major components of the concentrate are SiO2, Fe2O3, and Al2O3, but it also contains reactive sulphide minerals such as pyrite. The sulphides in the flotation concentrate are fully converted into an oxide form during oxidative roasting, therefore, the chemical composition of the roasted concentrate is considered to be a copper slag. High temperature smelting with additives to dissolve Au from the gold concentrate into a molten copper was used in the research. Gold greatly dissolved at 1600?? under a CaO/SiO2 ratio of 1.25, suggesting the increase in the dissolution of gold into molten copper with decreasing viscosity of the molten slag-like concentrate at high temperatures.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4992
Author(s):  
Ruimeng Shi ◽  
Xiaoming Li ◽  
Yaru Cui ◽  
Junxue Zhao ◽  
Chong Zou ◽  
...  

Nickel slags can be produced through ferronickel preparation by the pyrometallurgical processing of laterite nickel ores; however, such techniques are underutilized at present, and serious environmental problems arise from the stockpiling of such nickel ores. In this study, a modification to the process of ferronickel preparation by the direct reduction of carbon bases in laterite nickel ores is proposed. The gangue from the ore is used as a raw material to prepare a cementitious material, with the main components of tricalcium silicate and tricalcium aluminate. By using FactSage software, thermodynamic calculations are performed to analyze the reduction of nickel and iron and the effect of reduction on the formation of tricalcium silicate and tricalcium aluminate. The feasibility of a coupled process to prepare ferronickel and cementitious materials by the direct reduction of laterite nickel ore and gangue calcination, respectively, is discussed under varying thermodynamic conditions. Different warming strategies are applied to experimentally verify the coupled reactions. The coupled preparation of ferronickel and cementitious materials with calcium silicate and calcium aluminate as the main phases in the same experimental process is realized.


2019 ◽  
Vol 41 (17) ◽  
pp. 2240-2252 ◽  
Author(s):  
Zongliang Zuo ◽  
Qingbo Yu ◽  
Huaqing Xie ◽  
Fan Yang ◽  
Zhicheng Han ◽  
...  

1999 ◽  
Vol 45 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Galina Kovalevskaya ◽  
Steven Birken ◽  
Tatsu Kakuma ◽  
John Schlatterer ◽  
John F O’Connor

Abstract We report the development and characterization of an IRMA for the direct measurement of nicked human chorionic gonadotropin (hCGn) in blood and urine. hCGn derived from a reference preparation of hCG used as an immunogen elicits monoclonal antibodies (mAbs) with enhanced recognition of human luteinizing hormone epitopes. The most specific assay for pregnancy hCGn is an IRMA composed of one mAb to choriocarcinoma-derived hCGn (C5) and a second mAb developed from immunization with normal-pregnancy hCGn. This assay was used to evaluate hCGn profiles in normal, in vitro fertilization, Down syndrome, and ectopic pregnancies. In all pregnancies, hCGn was usually present in much lower concentrations than the non-nicked hCG isoform. Our results suggest that some form of physical separation from the overwhelming quantities of non-nicked hCG present in clinical specimens will be required before accurate immunochemical estimations of hCGn can be made.


2015 ◽  
Vol 22 (8) ◽  
pp. 2914-2921 ◽  
Author(s):  
De-qing Zhu ◽  
Yan-hong Luo ◽  
Jian Pan ◽  
Xian-lin Zhou

2003 ◽  
Vol 43 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Guanzhou Qiu ◽  
Tao Jiang ◽  
Zhucheng Huang ◽  
Deqing Zhu ◽  
Xiaohui Fan

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 832 ◽  
Author(s):  
Jie Wu ◽  
Jing Li ◽  
Feng Rao ◽  
Wanzhong Yin

In this study, copper slag reprocessing tailings (CSRT) were synthesized into geopolymers with 40%, 50% and 60% metakaolin. The evolution of compressive strength and microstructures of CSRT-based geopolymers in a marine environment was investigated. Except for compressive strength measurement, the characterizations of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM) were included. It was found that marine conditions changed the Si/Al ratio in the sodium-aluminosilicate-hydrate (N-A-S-H) gel backbone, promoted the geopolymerization process, led to more Q4(3Al), Q4(2Al) and Q4(1Al) gel formation and a higher compressive strength of the geopolymers. This provided a basis for the preparation of CSRT-based geopolymers into marine concrete.


Sign in / Sign up

Export Citation Format

Share Document