scholarly journals The Effect of Energy Level of Transport Layer on the Performance of Ambient Air Prepared Perovskite Solar Cell: A SCAPS-1D Simulation Study

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Qinmiao Chen ◽  
Yi Ni ◽  
Xiaoming Dou ◽  
Yamaguchi Yoshinori

The perovskite solar cell (PSC) as an emerging and promising type has been extensively studied. In this study, a model for a PSC prepared in ambient air was established by using SCAPS-1D. After that, it was further analyzed through varying the defect density of the perovskite absorber layer (Nt), the thin film thickness and energy-level matching between the electron transport layer (ETL), the perovskite absorber layer and the hole transport layer (HTL), for a better understanding of the carrier features. The Nt varied from 1.000 × 1011 to 1.000 × 1017 cm−3. The performance of the solar cell is promoted with improved Nt. When Nt is at 1.000 × 1015 cm−3, the carrier diffusion length reaches μm, and the carrier lifetime comes to 200 nm. The thickness of the absorber layer was changed from 200 to 600 nm. It is shown that the absorber layer could be prepared thinner for reducing carrier recombination when at high Nt. The thickness effect of ETL and HTL is weakened, since Nt dominates the solar cell performance. The effect of the affinity of ETL (3.4–4.3 eV) and HTL (2.0–2.7 eV), together with three energy-level matching situations “ETL(4.2)+HTL(2.5)”, “ETL(4.0)+HTL(2.2)” and “ETL(4.0)+HTL(2.5)” on the performance of the solar cell were analyzed. It was found that the HTL with valence band 0.05 eV lower than that of the perovskite absorber layer could have a blocking effect that reduced carrier recombination. The effect of energy-level matching becomes more important with improved Nt. Energy-level matching between the ETL and perovskite absorber layer turns out counterbalance characteristic on Jsc and Voc, and the “ETL(4.0)+HTL(2.5)” case can result in solar cell with Jsc of 27.58 mA/cm2, Voc of 1.0713 V, FF of 66.02% and efficiency of 19.51%. The findings would be very useful for fabricating high-efficiency and low-cost PSC by a large-scale ambient air route.

2020 ◽  
Vol 7 ◽  

The efficiency of MASnI3 based solar cell with various hole transport material (HTM) layers including Spiro-OMeTAD, PEDOT:Pss, and Cu2O is studied. Zinc oxide (ZnO) layer is proposed as electron transport layer for lead-free CH3NH3SnI3 based Perovskite solar cells. The influence of device parameters such as doping level of the active layer, thickness of the CH3NH3SnI3 layer and working temperature is discussed. For optimum parameters of all three structures, efficiency of 24.17%, 24.50%, and 25.36% for PEDOT:Pss, Spiro-OMeTAD, and Cu2O, respectively is achieved. To study the optimized performance of this Perovskite solar cell, SCAPS-1D software is considered.


2021 ◽  
Vol 24 (3) ◽  
pp. 341-347
Author(s):  
K. Bhavsar ◽  
◽  
P.B. Lapsiwala ◽  

Perovskite solar cells have become a hot topic in the solar energy device area due to high efficiency and low cost photovoltaic technology. However, their function is limited by expensive hole transport material (HTM) and high temperature process electron transport material (ETM) layer is common device structure. Numerical simulation is a crucial technique in deeply understanding the operational mechanisms of solar cells and structure optimization for different devices. In this paper, device modelling for different perovskite solar cell has been performed for different ETM layer, namely: TiO2, ZnO, SnO2, PCBM (phenyl-C61-butyric acid methyl ester), CdZnS, C60, IGZO (indium gallium zinc oxide), WS2 and CdS and effect of band gap upon the power conversion efficiency of device as well as effect of absorber thickness have been examined. The SCAPS 1D (Solar Cell Capacitance Simulator) has been a tool used for numerical simulation of these devices.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Dong In Kim ◽  
Ji Won Lee ◽  
Rak Hyun Jeong ◽  
Jin-Hyo Boo

AbstractOver the past number of years, the power conversion efficiency of perovskite solar cells has remained at 25.5%, reflecting a respectable result for the general incorporation of organometallic trihalide perovskite solar cells. However, perovskite solar cells still suffer from long-term stability issues. Perovskite decomposes upon exposure to moisture, thermal, and UV-A light. Studies related to this context have remained ongoing. Recently, research was mainly conducted on the stability of perovskite against non-radiative recombination. This study improved a critical instability in perovskite solar cells arising from non-radiative recombination and UV-A light using a passivation layer. The passivation layer comprised a polyaniline (PANI) polymer as an interfacial modifier inserted between the active layer and the electron transport layer. Accordingly, the UV-A light did not reach the active layer and confined the Pb2+ ions at PANI passivation layer. This study optimized the perovskite solar cells by controlling the concentration, thickness and drying conditions of the PANI passivation layer. As a result, the efficiency of the perovskite solar cell was achieved 15.1% and showed over 84% maintain in efficiency in the ambient air for one month using the 65 nm PANI passivation layer.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Shafiqul Islam ◽  
Sabrina Rahman ◽  
Adil Sunny ◽  
Md. Ashfaqul Haque ◽  
Md. Suruz Mian ◽  
...  

Abstract The present work investigates a tin-based highly efficient perovskite solar cell (PSC) by a solar cell capacitance simulator in one dimension. Molybdenum disulfide is introduced as hole transport layer in the proposed solar cell device structure. The photovoltaic performances of the proposed solar cell are investigated by varying thickness, doping concentration, and bulk defect density of various layers. Furthermore, the operating temperature and the series and shunt resistances are analyzed systematically. A higher conversion efficiency of 25.99% is obtained at the absorber thickness of 2000 nm. The optimum doping density of 1017 cm−3 is estimated for the absorber, electron transport layer (ETL), and hole transport layer (HTL), respectively. The optimum thicknesses of 50 nm, 1000 nm, and 60 nm are also found for the titanium dioxide as ETL, methylammonium tin triiodide (CH3NH3SnI3) as absorber layer, and molybdenum disulfide as HTL, respectively. The efficiency of the proposed lead-free CH3NH3SnI3-based solar cell with the alternative molybdenum disulfide HTL is calculated to be 24.65% with open-circuit voltage of 0.89 V, short-circuit current density of 34.04 mA/cm2, and fill-factor of 81.46% for the optimum parameters of all layers. These findings would contribute to fabricate low-cost, non-toxic, stable, and durable lead-free PSCs for the next generation.


2020 ◽  
Vol 34 (24) ◽  
pp. 2050258
Author(s):  
Anjan Kumar ◽  
Sangeeta Singh

Metal halide-perovskite solar cells have managed to attain soaring heights in power conversion efficiency in the past decade, rising from 3.8% to around 24% in 2019. Formal lead-based perovskites have captivated massive attention because of their then toxic nature and short-term stability of fabricated devices. Therefore, lead-free perovskites have drawn the researcher’s interest in recent years. In this work, we projected a unique planar perovskite structure constituted of [Formula: see text] Tungsten Disulfide [Formula: see text] lead-free perovskite[Formula: see text]. Herein, Tungsten Disulfide (WS2) acts as an electron transport layer (ETL) due to its excellent electron transport capability. The cuprous oxide is used as a hole transport layer (HTL) due to its perfect band alignment with perovskites. The proposed structure is quantitatively analyzed using a solar cell capacitance simulator. The simulation carried out revealed that tin halide perovskite (CH3NH3SnI3) is having the great potential to be an absorbent layer. The proposed configuration demonstrated excellent power configuration efficiency (PCE) of 23% at an optimized thickness of different segments. The impact of neutral defect density and position of defect energy level with respect to active layer on device performance was quantitatively analyzed. The results showed that values of performance parameters ([Formula: see text], FF, [Formula: see text] and PCE) of proposed device configurations are drastically reduced with increasing the total defect density of interfacial and perovskite layers. These simulated results will help the researchers working in the specific area of lead-free perovskite solar cell (LFPSC) fabrication.


The researchers now days are avid of solar cells despite the efficiency issues. As lead-based halide perovskite exhibit toxic nature alternatives for the anti- toxic perovskite solar cells(PSCs) are gaining much research. Bis(sulfanylidene )tungsten is a toxic free feasible emerging option with direct band gap of value 1.8 eV. Tungsten disulfide is other chemical name of Bis(sulfanylidene)tungsten. In this paper, perovskite solar cell (PSC) with Bis(sulfanylidene)tungsten (WS2 ) as electron transport layer and spiro-OMeTAD as hole transport layer is modelled and simulated using SCAPS software to analyze performance parameters. The device simulations results are compared for comprehensive defect study of WS2 as ETL. With integration of WS2 and spiro-OMeTAD in the perovskite design, the outcomes are proficient enough with 25.96% of PCE, 22.06 mA/cm2 Jsc, 1.280V Voc and 91.76% FF. Launching the batch setup for absorber layer thickness further resulted with competent PCE 27.78%. The outcomes signified that the toxic-free WS2 based PSC can be a prominent upcoming perspective in terms of environmentally pristine nature and capitulate comparative high efficiency


2021 ◽  
Vol 19 (51) ◽  
pp. 23-32
Author(s):  
Ahmed Ali Assi ◽  
Wasan R. Saleh ◽  
Ezzedin Mohajerani

The present work aims to fabricate n-i-p forward perovskite solar cell (PSC) withئ structure (FTO/ compact TiO2/ compact TiO2/ MAPbI3 Perovskite/ hole transport layer/ Au). P3HT, CuI and Spiro-OMeTAD were used as hole transport layers. A nano film of 25 nm gold layer was deposited once between the electron transport layer and the perovskite layer, then between the hole transport layer and the perovskite layer. The performance of the forward-perovskite solar cell was studied. Also, the role of each electron transport layer and the hole transport layer in the perovskite solar cell was presented. The structural, morphological and electrical properties were studied with X-ray diffractometer, field emission scanning electron microscope and current-voltage (J-V) characteristic curves, respectively. J-V curves revealed that the deposition of the Au layer between the electron transport layer (ETL) and Perovskite layer (PSK) reduced the power conversion efficiency (PCE) from 3% to 0.08% when one layer of C. TiO2 is deposited in the PSC and to 0.11% with two layers of C. TiO2. Power conversion efficiency, with CuI as the hole transport layer (HTL), showed an increase from 0.5% to 2.7% when Au layer was deposited between PSK and CuI layers. Also, Isc increased from 6.8 mA to 17.4 mA and Voc from 0.3 V to 0.5V. With depositing Au layer between P3HT and PSK layers, the results showed an increase in the efficiency from 1% to 2.6% and an increase in Isc from 10.7 mA to 30.5 mA, while Voc decreased from 0.75 V to 0.5V


2021 ◽  
Author(s):  
Hao liangsheng ◽  
Li Tong ◽  
Ma Xinxia ◽  
Wu jiang ◽  
Qiao Lingxia ◽  
...  

Abstract Recently, organic-inorganic halide perovskite solar cells (PSCs) have received extensive research in the field of optoelectronic materials due to their unique optical and electrical properties, especially lead-based PSCs. However, the toxicity and stability of these devices, as well as the expensive hole transport layer (HTL) and other factors inhibit their commercial production. In this work, the non-toxic tin was applied as the battery material, the perovskite solar cell adopts an inverted HTL-free structure, and the one-dimensional solar cell capacitor simulator SCAPS-1D (Solar Cell Capacitance Simulator) was adopted for numerical simulation and found that FTO/CH3 NH3 SnI3 /C60 /Au structure PSCs also showed excellent photovoltaic performance. We studied the influence of the thickness of the absorber layer, the defect density, the doping concentration of different layers, and the thickness of the electron transport layer (ETL) under different directions of illumination on the battery performance. The simulation results show that the optimized inverted HTL-free tin-based PSCs based on C60 are with inspiring performance: a short-circuit current density (JSC ) of 30.1646 mA/cm 2 , open-circuit voltage (VOC ) of 1.0465V, fill factor (FF) of 59.49% and power conversion efficiency (PCE) of 18.78%. We also introduced light from different directions to irradiate PSCs, and the results show that the HTL-free perovskite adopting an inverted structure can retain the light intensity of the irradiated perovskite layer to the greatest extent and exhibit superior performance. Based on the inverted HTL-free tin-based PSCs, we also investigated the performance parameters of ETL batteries with different materials. This work provides new ideas for PSCs development in the future.


2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


Sign in / Sign up

Export Citation Format

Share Document