scholarly journals Trait–Abundance Relationships of Annual Ephemerals in Response to Nitrogen Addition in Gurbantunggut Desert

Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 569
Author(s):  
Mao Wang ◽  
Haiyang Ma ◽  
Dunyan Tan

Understanding the effect of nitrogen addition on species trait–abundance relationships is one of the central focuses of community ecology and can offer us insights into the mechanisms of community assembly under atmospheric nitrogen deposition. However, few studies have focused on desert ecosystems. In this study, we measured the abundance and ecological stoichiometric traits, leaf carbon content (LCC), nitrogen content (LNC), and phosphorus content (LPC) for all annual ephemerals in all plots subjected to nitrogen addition in early spring in Gurbantunggut Desert, northern Xinjiang, China. We found a significant relationship between traits (LNC, N:P, and C:N) and abundance, indicating that ecological stoichiometry is a good proxy for explaining and predicting species abundance. We further found that significant trait–abundance relationships still existed under different nitrogen addition levels. The result suggests that trait-based niche-assembly theory plays an important role in determining species abundance under atmospheric nitrogen deposition.

Ecosystems ◽  
2013 ◽  
Vol 16 (7) ◽  
pp. 1310-1324 ◽  
Author(s):  
Tiziana Gentilesca ◽  
Massimo Vieno ◽  
Michael P. Perks ◽  
Marco Borghetti ◽  
Maurizio Mencuccini

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6158 ◽  
Author(s):  
Yanfeng Chen ◽  
Lingwei Zhang ◽  
Xiang Shi ◽  
Huiliang Liu ◽  
Daoyuan Zhang

Precipitation change and nitrogen deposition are not only hot topics of current global change but also the main environmental factors affecting plant growth in desert ecosystems. Thus, we performed an experiment of increased precipitation, nitrogen, and precipitation plus nitrogen on the ephemeral annual species Nepeta micrantha and Eremopyrum distans in the Gurbantunggut Desert. We aimed to determine the life history responses of N. micrantha and E. distans to environment changes, and the germination percentage of the offspring (seeds) was also tested in the laboratory. The results showed that increased nitrogen and precipitation plus nitrogen increased the growth of both plant species, whereas increased precipitation inhibited the growth of N. micrantha but increased the growth of E. distans. This differential response of these two species to precipitation and nitrogen also affected the germination of their offspring. In response to increased nitrogen and precipitation plus nitrogen, the germination percentage of the offspring produced by two species decreased in conjunction with the plants exhibiting high reproduction, which may prevent overcrowding during the following year; however, the N. micrantha plants produced more nondormant offspring in conjunction with low reproduction under relatively greater amounts of precipitation, and N. micrantha offspring could occupy their habitat via rapid germination in suitable environments. Therefore, with increased precipitation and nitrogen deposition, these differences in offspring dormancy may affect their ecological niche in the community.


Nitrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 308-320
Author(s):  
D. Nayeli Martínez ◽  
Edison A. Díaz-Álvarez ◽  
Erick de la Barrera

Environmental pollution is a major threat to public health and is the cause of important economic losses worldwide. Atmospheric nitrogen deposition is one of the most significant components of environmental pollution, which, in addition to being a health risk, is one of the leading drivers of global biodiversity loss. However, monitoring pollution is not possible in many regions of the world because the instrumentation, deployment, operation, and maintenance of automated systems is onerous. An affordable alternative is the use of biomonitors, naturally occurring or transplanted organisms that respond to environmental pollution with a consistent and measurable ecophysiological response. This policy brief advocates for the use of biomonitors of atmospheric nitrogen deposition. Descriptions of the biological and monitoring particularities of commonly utilized biomonitor lichens, bryophytes, vascular epiphytes, herbs, and woody plants, are followed by a discussion of the principal ecophysiological parameters that have been shown to respond to the different nitrogen emissions and their rate of deposition.


2006 ◽  
Vol 12 (3) ◽  
pp. 470-476 ◽  
Author(s):  
GARETH K. PHOENIX ◽  
W. KEVIN HICKS ◽  
STEVE CINDERBY ◽  
JOHAN C. I. KUYLENSTIERNA ◽  
WILLIAM D. STOCK ◽  
...  

Hydrobiologia ◽  
2003 ◽  
Vol 510 (1-3) ◽  
pp. 103-114 ◽  
Author(s):  
Koren R. Nydick ◽  
Brenda Moraska Lafrancois ◽  
Jill S. Baron ◽  
Brett M. Johnson

Sign in / Sign up

Export Citation Format

Share Document