scholarly journals Modeling the Impact of the Vehicle-to-Grid Services on the Hourly Operation of the Power Distribution Grid

Designs ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 55 ◽  
Author(s):  
Tawfiq Aljohani ◽  
Osama Mohammed

Electric Vehicles (EVs) impact on the grid could be very high. Unless we monitor and control the integration of EVs, the distribution network might experience unexpected high or low load that might exceed the system voltage limits, leading to severe stability issues. On the other hand, the available energy stored in the EVs can be utilized to free the distribution system from some of the congested load at certain times or to allow the grid to charge more EVs at any time of the day, including peak hours. This article presents dynamic simulations of the hour-to-hour operation of the distribution feeder to measure the grid’s reaction to the EV’s charging and discharging process. Four case scenarios were modeled here considering a 24-h distribution system load data on the IEEE 34 bus feeder. The results show the level of charging and discharging that were allowed on this test system, during each hour of the day, before violating the limits of the system. It also estimates the costs of charging throughout the day, utilizing time-of-use rates as well as the number of EVs to be charged on an hourly basis on each bus and provide hints on the best locations on the system to establish the charging infrastructure.

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Dalila M.S. ◽  
Zaris I.M.Y. ◽  
Nasarudin A. ◽  
Faridah H.

This paper purposely to examine and analyse the impact of the distribution capacitors banks operation to the transition of total harmonic distortion (THD) level in distribution network system. The main advantage of this work is the simplicity algorithm of the method and the system being analysed using free access open software which is known as electric power distribution system simulator (OpenDSS). In this paper, the harmonic current spectrum which is collected from the commercial site was injected to a node point on IEEE13 bus in order to provide the initial measurement of THD for the network. The proper sizing of the capacitors banks has been set and being deactivated and activated throughout the network to see the transistion in the THD level in the system. The results were achieved by simulation of the data on the configured IEEE13 bus. The simulation work was done by using the combination of C++ source codes, OpenDSS and Microsoft Excel software. From the output results, the THD current has increased up to two times from the initial value in certain phases and for the THD voltage, the THD has increased up to three times from its initial value in all phases.


Author(s):  
Zuhaila Mat Yasin ◽  
Izni Nadhirah Sam’ón ◽  
Norziana Aminudin ◽  
Nur Ashida Salim ◽  
Hasmaini Mohamad

<p>Monitoring fault current is very important in power system protection. Therefore, the impact of installing Distributed Generation (DG) on the fault current is investigated in this paper. Three types of fault currents which are single line-to-ground, double line-to-ground and three phase fault are analyzed at various fault locations. The optimal location of DG was identified heuristically using power system simulation program for planning, design and analysis of distribution system (PSS/Adept). The simulation was conducted by observing the power losses of the test system by installing DG at each load buses. Bus with minimum power loss was chosen as the optimal location of DG. In order to study the impact of DG to the fault current, various locations and sizes of DG were also selected. The simulations were conducted on IEEE 33-bus distribution test system and IEEE 69-bus distribution test system. The results showed that the impact of DG to the fault current is significant especially when fault occurs at busses near to DG location.</p>


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 686 ◽  
Author(s):  
Bruno Canizes ◽  
João Soares ◽  
Zita Vale ◽  
Juan Corchado

The use of electric vehicles (EVs) is growing in popularity each year, and as a result, considerable demand increase is expected in the distribution network (DN). Additionally, the uncertainty of EV user behavior is high, making it urgent to understand its impact on the network. Thus, this paper proposes an EV user behavior simulator, which operates in conjunction with an innovative smart distribution locational marginal pricing based on operation/reconfiguration, for the purpose of understanding the impact of the dynamic energy pricing on both sides: the grid and the user. The main goal, besides the distribution system operator (DSO) expenditure minimization, is to understand how and to what extent dynamic pricing of energy for EV charging can positively affect the operation of the smart grid and the EV charging cost. A smart city with a 13-bus DN and a high penetration of distributed energy resources is used to demonstrate the application of the proposed models. The results demonstrate that dynamic energy pricing for EV charging is an efficient approach that increases monetary savings considerably for both the DSO and EV users.


2014 ◽  
Vol 953-954 ◽  
pp. 1367-1371
Author(s):  
Dong Hua Wang ◽  
Cheng Xiong Mao ◽  
Min Wei Wang ◽  
Ji Ming Lu ◽  
Hua Fan ◽  
...  

The plug-in electric vehicles (PEVs) would exert inevitable impact on distribution system operation due to the spatial and temporal stochastic nature of the charging load. Based on the probability distributions of battery charging start time and the initial state-of-charge (SOC), the spatial and temporal charging loads of PEVs are analyzed on load nature and charging behaviors among different functional distribution areas. Taking IEEE 33-bus distribution system as an example, the Monte Carlo method is adopted to simulate charging load under different charging strategies and charging places for assess the impact on network loss and nodal voltage using standard load flow calculations. The results show that the choice of control strategies can improve the impacts of PEVs charging on distribution grid; a well-developed public charging infrastructure could reduce the stress on the residential distribution systems; optimal assignment of PEVs charging in residential area and industrial or commercial areas would provide a reference for charging infrastructure construction.


2021 ◽  
Vol 25 (1) ◽  
pp. 1142-1151
Author(s):  
Gunars Valdmanis ◽  
Gatis Bazbauers

Abstract Rapidly increasing number of electric vehicles (EV) is expected in the future. It is important to understand the consequences of this process for operation of power grids. The goal of this study was to determine an impact of increasing number of EV on the economic performance of electricity distribution system, including the impact on users of power distribution infrastructure. Factors, such as expected network load changes and required investment in the networks as well as possible changes in power distribution tariff were considered. Analysis of Latvia’s power distribution system shows that the installed capacity significantly exceeds the load. It means that connection of EV charging infrastructure to the system and resulting increase of the system’s load may not require additional investments and even could bring a positive economic effect due to better utilization of the infrastructure.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1577
Author(s):  
Shuang Gao ◽  
Jianzhong Wu ◽  
Bin Xu

A considerable market share of electric vehicles (EVs) is expected in the near future, which leads to a transformation from gas stations to EV charging infrastructure for automobiles. EV charging stations will be integrated with the power grid to replace the fuel consumption at the gas stations for the same mobile needs. In order to evaluate the impact on distribution networks and the controllability of the charging load, the temporal and spatial distribution of the charging power is calculated by establishing mapping the relation between gas stations and charging facilities. Firstly, the arrival and parking period is quantified by applying queuing theory and defining membership function between EVs to parking lots. Secondly, the operational model of charging stations connected to the power distribution network is formulated, and the control variables and their boundaries are identified. Thirdly, an optimal control algorithm is proposed, which combines the configuration of charging stations and charging power regulation during the parking period of each individual EV. A two-stage hybrid optimization algorithm is developed to solve the reliability constrained optimal dispatch problem for EVs, with an EV aggregator installed at each charging station. Simulation results validate the proposed method in evaluating the controllability of EV charging infrastructure and the synergy effects between EV and renewable integration.


2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Kamel A. Alboaouh ◽  
Salman Mohagheghi

This paper presents a review of the impact of rooftop photovoltaic (PV) panels on the distribution grid. This includes how rooftop PVs affect voltage quality, power losses, and the operation of other voltage-regulating devices in the system. A historical background and a classification of the most relevant publications are presented along with the review of the important lessons learned. It has been widely believed that high penetration levels of PVs in the distribution grid can potentially cause problems for node voltages or overhead line flows. However, it is shown in the literature that proper control of the PV resource using smart inverters can alleviate many of those issues, hence paving the way for higher PV penetration levels in the grid.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5503
Author(s):  
Wen Fan ◽  
Ning Kang ◽  
Robert Hebner ◽  
Xianyong Feng

This paper summarizes the literature on detection of islanding resulting from distributed generating capabilities in a power distribution system, with emphasis on the rural distribution systems. It is important to understand the legacy technology and equipment in the rural distribution electrical environment due to the growth of power electronics and the potential for adding the new generations of intelligent sensors. The survey identified four areas needing further research: 1. Robustness in the presence of distribution grid disturbances; 2. the future role of artificial intelligence in the islanding application; 3. more realistic standard tests for the emerging electrical environment; 4. smarter sensors. In addition, this paper presents a synchro-phasor-based islanding detection approach based on a wireless sensor network developed by the University of Texas at Austin. Initial test results in a control hardware-in-the-loop (CHIL) simulation environment suggest the effectiveness of the developed method.


Sign in / Sign up

Export Citation Format

Share Document