scholarly journals Combined Strategies with Poly (ADP-Ribose) Polymerase (PARP) Inhibitors for the Treatment of Ovarian Cancer: A Literature Review

Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 87 ◽  
Author(s):  
Stergios Boussios ◽  
Peeter Karihtala ◽  
Michele Moschetta ◽  
Afroditi Karathanasi ◽  
Agne Sadauskaite ◽  
...  

Poly (ADP-ribose) polymerase (PARP) inhibitors are the first clinically approved drugs designed to exploit synthetic lethality, and were first introduced as a cancer-targeting strategy in 2005. They have led to a major change in the treatment of advanced ovarian cancer, and altered the natural history of a disease with extreme genetic complexity and defective DNA repair via homologous recombination (HR) pathway. Furthermore, additional mechanisms apart from breast related cancer antigens 1 and 2 (BRCA1/2) mutations can also result in HR pathway alterations and consequently lead to a clinical benefit from PARP inhibitors. Novel combinations of PARP inhibitors with other anticancer therapies are challenging, and better understanding of PARP biology, DNA repair mechanisms, and PARP inhibitor mechanisms of action is crucial. It seems that PARP inhibitor and biologic agent combinations appear well tolerated and clinically effective in both BRCA-mutated and wild-type cancers. They target differing aberrant and exploitable pathways in ovarian cancer, and may induce greater DNA damage and HR deficiency. The input of immunotherapy in ovarian cancer is based on the observation that immunosuppressive microenvironments can affect tumour growth, metastasis, and even treatment resistance. Several biologic agents have been studied in combination with PARP inhibitors, including inhibitors of vascular endothelial growth factor (VEGF; bevacizumab, cediranib), and PD-1 or PD-L1 (durvalumab, pembrolizumab, nivolumab), anti-CTLA4 monoclonal antibodies (tremelimumab), mTOR-(vistusertib), AKT-(capivasertib), and PI3K inhibitors (buparlisib, alpelisib), as well as MEK 1/2, and WEE1 inhibitors (selumetinib and adavosertib, respectively). Olaparib and veliparib have also been combined with chemotherapy with the rationale of disrupting base excision repair via PARP inhibition. Olaparib has been investigated with carboplatin and paclitaxel, whereas veliparib has been tested additionally in combination with temozolomide vs. pegylated liposomal doxorubicin, as well as with oral cyclophosphamide, and topoisomerase inhibitors. However, overlapping myelosuppression observed with PARP inhibitor and chemotherapy combinations requires further investigation with dose escalation studies. In this review, we discuss multiple clinical trials that are underway examining the antitumor activity of such combination strategies.

2021 ◽  
Vol 12 (1) ◽  
pp. 82-104
Author(s):  
Sofia Levva ◽  
Aglaia Skolariki ◽  
Eleni Sogka ◽  
Alexandros Bokas ◽  
Avraam Assi ◽  
...  

Abstract The field of ovarian cancer has been revolutionized with the use of poly (ADP-ribose) polymerase (PARP) inhibitors, which present greater inhibition effect in epithelial subtype due to high rates of homologous recombination deficiency. PARP inhibition exploits this cancer pitfall by disrupting DNA repair, leading to genomic instability and apoptosis. Three PARP inhibitors (olaparib, niraparib, and rucaparib) are now approved for use in women with epithelial ovarian cancer, while others are under development. Among women with BRCA1/2 mutations, maintenance PARP therapy has led to a nearly fourfold prolongation of PFS, while those without BRCA1/2 mutations experience an approximately twofold increase in PFS. Differences in trial design, patient selection and primary analysis population affect the conclusions on PARP inhibitors. Limited OS data have been published and there is also limited experience regarding long-term safety. With regard to toxicity profile, there are no differences in serious adverse events between the experimental and control groups. However, combining adverse event data from maintenance phases, a trend towards more events in the experimental group, compared with controls, has been shown. The mechanisms of PARP-inhibitor resistance include restoration of HR through reversion mutations in HR genes, leading to resumed HR function. Other mechanisms that sustain sufficient DNA repair are discussed as well. PARP inhibitors play a pivotal role in the management of ovarian cancer, affecting the future treatment choices. Defining exactly which patients will benefit from them is a challenge and the need for HRD testing to define ‘BRCA-ness’ will add additional costs to treatment.


2017 ◽  
Vol 9 (9) ◽  
pp. 579-588 ◽  
Author(s):  
Davide Caruso ◽  
Anselmo Papa ◽  
Silverio Tomao ◽  
Patrizia Vici ◽  
Pierluigi Benedetti Panici ◽  
...  

Ovarian cancer is the first cause of death from gynaecological malignancy. Germline mutation in BRCA1 and 2, two genes involved in the mechanisms of reparation of DNA damage, are showed to be related with the incidence of breast and ovarian cancer, both sporadic and familiar. PARP is a family of enzymes involved in the base excision repair (BER) system. The introduction of inhibitors of PARP in patients with BRCA-mutated ovarian cancer is correlated with the concept of synthetic lethality. Among the PARP inhibitors introduced in clinical practice, niraparib showed interesting results in a phase III trial in the setting of maintenance treatment in ovarian cancer, after platinum-based chemotherapy. Interestingly, was niraparib showed to be efficacious not only in BRCA-mutated patients, but also in patients with other alterations of the homologous recombination (HR) system and in patients with unknown alterations. These results position niraparib as the first PARP-inhibitor with clinically and statistically significant results also in patients with no alterations in BRCA 1/2 and other genes involved in the DNA repair system. Even if the results are potentially practice-changing, the action of niraparib must be further studied and deepened.


Diagnostics ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 55 ◽  
Author(s):  
Boussios ◽  
Karathanasi ◽  
Cooke ◽  
Neille ◽  
Sadauskaite ◽  
...  

Poly (ADP-ribose) polymerase (PARP) inhibitors are a novel class of therapeutic agents that target tumors with deficiencies in the homologous recombination DNA repair pathway. Genomic instability characterizes high-grade serous ovarian cancer (HGSOC), with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Early studies have shown significant efficacy for PARP inhibitors in patients with germline breast related cancer antigens 1 and 2 (BRCA1/2) mutations. It has also become evident that BRCA wild-type patients with other defects in the homologous recombination repair pathway benefit from this treatment. Companion homologous recombination deficiency (HRD) scores are being developed to guide the selection of patients that are most likely to benefit from PARP inhibition. The choice of which PARP inhibitor is mainly based upon the number of prior therapies and the presence of a BRCA mutation or HRD. The identification of patients most likely to benefit from PARP inhibitor therapy in view of HRD and other biomarker assessments is still challenging. The aim of this review is to describe the current evidence for PARP inhibitors in ovarian cancer, their mechanism of action, and the outstanding issues, including the rate of long-term toxicities and the evolution of resistance.


2019 ◽  
Vol 05 (01) ◽  
pp. 01-18
Author(s):  
Vikas Goswami ◽  
Venkata Pradeep Babu Koyyala ◽  
Sumit Goyal ◽  
Manish Sharma ◽  
Varun Goel ◽  
...  

AbstractPoly (ADP-ribose) polymerase (PARP) inhibitors are a unique class of therapeutic agents that focus on tumors with deficiencies in the homologous recombination DNA repair mechanism. Genomic instability outlines high-grade serous ovarian cancer, with 50% of all tumors displaying defects in the important DNA repair mechanism of homologous recombination. Earlier research studies have demonstrated considerable efficiency for PARP inhibitors in patients with germ line breast-related cancer antigens 1 and 2 (BRCA-1/BRCA-2) mutations. It has also been observed that BRCA wild-type patients with other defects in the homologous recombination repair mechanism get benefited from this therapy. Companion homologous recombination deficiency (HRD) scores are being developed to guide the selection of patients that are most likely to benefit from PARP inhibition. The selection of PARP inhibitor is mainly dependent upon the number of prior therapies and the presence of a BRCA mutation or HRD. The identification of cases which are most likely to get benefited from PARP inhibitor therapy in view of HRD and other biomarker assessments is still challenging. The purpose of this review is to focus and describe the current evidences for PARP inhibitors in ovarian malignancy, their mechanism of action, and the outstanding issues, including the rate of long-term toxicities and the evolving resistance.


2020 ◽  
Vol 21 (2) ◽  
pp. 167-178 ◽  
Author(s):  
Ling Wang ◽  
Qi Wang ◽  
Yangchun Xu ◽  
Manhua Cui ◽  
Liying Han

The standard treatment for advanced ovarian cancer is cytoreductive surgery followed by cytotoxic chemotherapy. However, it has high risk of recurrence and poor prognosis. Poly(ADPribose) polymerase (PARP) inhibitors selectively target DNA double-strand breaks (DSBs) in tumor cells that cannot be repaired and induce the synthetic lethality of BRCA1/2 mutation cancers. PARP inhibitors are clinically used to treat recurrent ovarian cancer and show significant efficacy in ovarian cancer patients with homologous recombination repair (HRR) pathway defects. PARP inhibitors also have significant clinical benefits in patients without HR defects. With the increasingly extensive clinical application of PARP inhibitors, the possibility of acquiring drug resistance is high. Therefore, clinical strategies should be adopted to manage drug resistance of PARP inhibitors. This study aims to summarize the indications and toxicity of PARP inhibitors, the mechanism of action, targeted treatment of drug resistance, and potential methods to manage drug-resistant diseases. We used the term “ovarian cancer” and the names of each PARP inhibitor as keywords to search articles published in the Medical Subject Headings (MeSH) on Pubmed, along with the keywords “clinicaltrials.gov” and “google.com/patents” as well as “uspto.gov.” The FDA has approved olaparib, niraparib, and rucaparib for the treatment of recurrent epithelial ovarian cancer (EOC). Talazoparib and veliparib are currently in early trials and show promising clinical results. The mechanism underlying resistance to PARP inhibitors and the clinical strategies to overcome them remain unclear. Understanding the mechanism of resistance to PARP inhibitors and their relationship with platinum resistance may help with the development of antiresistance therapies and optimization of the sequence of drug application in the future clinical treatment of ovarian cancer.


2020 ◽  
Vol 15 (1) ◽  
pp. 12-23
Author(s):  
Eriko Osaki ◽  
Shinya Mizuno

Background: Poly-(ADP-Ribose) Polymerase (PARP) plays a central role in recovery from single-strand DNA (ssDNA) damage via base excision repair. When PARP activity is inhibited by a NAD+ mimetic analog, ssDNA is converted into a Double-Strand Break (DSB) during the S-phase in a cell cycle. However, the DSB site is repaired in a process of Homologous Recombination (HR) that is derived by genes such as BRCA1/2, PALB2, and RAD51. Under conditions of HR dysfunction, including mutations of BRCA1/2 (called BRCAness), PARP inhibitor (PARPi) induces “synthetic lethality” in BRCAness-specific cancer cells. Indeed, clinical trials using forms of PARPi that include olaparib, veliparib and rucaparib, have revealed that PARP inhibition produces a dramatic effect that actually arrests cancer progression. Its clinical efficiency is limited, however, due to the acquisition of PARPi resistance during long-term use of this inhibitor. Thus, it is important to elucidate the mechanisms of PARPi resistance. Methods: We searched the scientific literature published in PubMed, with a special focus on kinase phosphorylation that is involved in acquiring PARPi resistance. We also summarized the possible molecular events for recovering HR system, a key event for acquiring PARPi resistance. Results: CDK1 is a critical kinase for 5’-3’ DNA end resection, which is important for generating ssDNA for recruiting HR-priming factors. CDK12 is necessary for the transcription of HR-driver genes, such as BRCA1, BRCA2, RAD51 and ATR via the phosphorylation of RNA Pol-II. PLK-1 participates in driving HR via the phosphorylation of RAD51. The PI3K-AKT-mTOR signaling cascade is involved in BRCA1 induction via an ETS1 transcriptional pathway. Even under ATMdeficient conditions, the ATR-CHK1 axis compensates for loss in the DNA damage response, which results in HR recovery. The HGF receptor Met tyrosine kinase is responsible for promoting DNA repair by activating the PARP catalytic domain. Conclusion: These kinase-based signaling pathways are biologically important for understanding the compensatory system of HR, whereas inactivation of these kinases has shown promise for the release of PARPi resistance. Several lines of preclinical studies have demonstrated the potential use of kinase inhibitors to enhance PARPi sensitivity. We emphasize the clinical importance of chemical inhibitors as adjuvant drugs to block critical kinase activities and prevent the possible PARPi resistance.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Stephen Murata ◽  
Catherine Zhang ◽  
Nathan Finch ◽  
Kevin Zhang ◽  
Loredana Campo ◽  
...  

Poly(ADP-ribose) polymerase (PARP) inhibitors have proven to be successful agents in inducing synthetic lethality in several malignancies. Several PARP inhibitors have reached clinical trial testing for treatment in different cancers, and, recently, Olaparib (AZD2281) has gained both United States Food and Drug Administration (USFDA) and the European Commission (EC) approval for use inBRCA-mutated advanced ovarian cancer treatment. The need to identify biomarkers, their interactions in DNA damage repair pathways, and their potential utility in identifying patients who are candidates for PARP inhibitor treatment is well recognized. In this review, we detail many of the biomarkers that have been investigated for their ability to predict both PARP inhibitor sensitivity and resistance in preclinical studies as well as the results of several clinical trials that have tested the safety and efficacy of different PARP inhibitor agents inBRCAand non-BRCA-mutated cancers.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2054
Author(s):  
Elizabeth K. Lee ◽  
Ursula A. Matulonis

The use of PARP inhibitors (PARPi) is growing widely as FDA approvals have shifted its use from the recurrence setting to the frontline setting. In parallel, the population developing PARPi resistance is increasing. Here we review the role of PARP, DNA damage repair, and synthetic lethality. We discuss mechanisms of resistance to PARP inhibition and how this informs on novel combinations to re-sensitize cancer cells to PARPi.


2019 ◽  
Vol 8 (4) ◽  
pp. 435 ◽  
Author(s):  
Man Keung ◽  
Yanyuan Wu ◽  
Jaydutt Vadgama

Poly (ADP-ribose) polymerases (PARPs) play an important role in various cellular processes, such as replication, recombination, chromatin remodeling, and DNA repair. Emphasizing PARP’s role in facilitating DNA repair, the PARP pathway has been a target for cancer researchers in developing compounds which selectively target cancer cells and increase sensitivity of cancer cells to other anticancer agents, but which also leave normal cells unaffected. Since certain tumors (BRCA1/2 mutants) have deficient homologous recombination repair pathways, they depend on PARP-mediated base excision repair for survival. Thus, inhibition of PARP is a promising strategy to selectively kill cancer cells by inactivating complementary DNA repair pathways. Although PARP inhibitor therapy has predominantly targeted BRCA-mutated cancers, this review also highlights the growing conversation around PARP inhibitor treatment for non-BRCA-mutant tumors, those which exhibit BRCAness and homologous recombination deficiency. We provide an update on the field’s progress by considering PARP inhibitor mechanisms, predictive biomarkers, and clinical trials of PARP inhibitors in development. Bringing light to these findings would provide a basis for expanding the use of PARP inhibitors beyond BRCA-mutant breast tumors.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel R. Principe ◽  
Matthew Narbutis ◽  
Regina Koch ◽  
Ajay Rana

AbstractPARP inhibitors have shown remarkable efficacy in the clinical management of several BRCA-mutated tumors. This approach is based on the long-standing hypothesis that PARP inhibition will impair the repair of single stranded breaks, causing synthetic lethality in tumors with loss of high-fidelity double-strand break homologous recombination. While this is now well accepted and has been the basis of several successful clinical trials, emerging evidence strongly suggests that mutation to several additional genes involved in homologous recombination may also have predictive value for PARP inhibitors. While this notion is supported by early clinical evidence, the mutation frequencies of these and other functionally related genes are largely unknown, particularly in cancers not classically associated with homologous recombination deficiency. We therefore evaluated the mutation status of 22 genes associated with the homologous recombination DNA repair pathway or PARP inhibitor sensitivity, first in a pan-cancer cohort of 55,586 patients, followed by a more focused analysis in The Cancer Genome Atlas cohort of 12,153 patients. In both groups we observed high rates of mutations in a variety of HR-associated genes largely unexplored in the setting of PARP inhibition, many of which were associated also with poor clinical outcomes. We then extended our study to determine which mutations have a known oncogenic role, as well as similar to known oncogenic mutations that may have a similar phenotype. Finally, we explored the individual cancer histologies in which these genomic alterations are most frequent. We concluded that the rates of deleterious mutations affecting genes associated with the homologous recombination pathway may be underrepresented in a wide range of human cancers, and several of these genes warrant further and more focused investigation, particularly in the setting of PARP inhibition and HR deficiency.


Sign in / Sign up

Export Citation Format

Share Document