scholarly journals Effects of Oral Commensal Streptococci on Porphyromonas gingivalis Invasion into Oral Epithelial Cells

2020 ◽  
Vol 8 (2) ◽  
pp. 39 ◽  
Author(s):  
Alyssa N. Hanel ◽  
Hannah M. Herzog ◽  
Michelle G. James ◽  
Giancarlo A. Cuadra

The objective of this study was to determine if the interaction between common oral commensal bacteria and oral epithelial cells would provide protective effects against the invasion of periodontopathogen Porphyromonas gingivalis. Oral epithelial OKF6/Tert cells were used in co-cultures with Streptococcus gordonii, Streptococcus oralis, Streptococcus mitis, and Streptococcus intermedius. The viability of OKF6/Tert cells following a bacterial challenge was evaluated by trypan blue exclusion. The adherence of commensal species was determined by CFU counts. P. gingivalis invasion in OKF6/Tert cells was assessed before and after exposure to commensal species according to CFU counts. Viability assays show that only S. gordonii and S. intermedius display low toxicity toward OKF6/Tert cells. Both commensals adhere to OKF6/Tert cells at an average ratio of 1 CFU to 10 cells. P. gingivalis invasion into host cells is significantly reduced by 25% or 60% after exposure to S. gordonii or S. intermedius, respectively. The results suggest that these commensal species bind to host cells and diminish P. gingivalis invasion. This is important in the context of periodontal disease since P. gingivalis primarily acts on the host by invading it. Therefore, efforts to decrease invasion will eventually lead to future therapies harnessing the mechanisms employed by oral commensal bacteria.

2021 ◽  
Vol 22 (22) ◽  
pp. 12149
Author(s):  
Hector F. Pelaez-Prestel ◽  
Jose L. Sanchez-Trincado ◽  
Esther M. Lafuente ◽  
Pedro A. Reche

The oral mucosa is a site of intense immune activity, where a large variety of immune cells meet to provide a first line of defense against pathogenic organisms. Interestingly, the oral mucosa is exposed to a plethora of antigens from food and commensal bacteria that must be tolerated. The mechanisms that enable this tolerance are not yet fully defined. Many works have focused on active immune mechanisms involving dendritic and regulatory T cells. However, epithelial cells also make a major contribution to tolerance by influencing both innate and adaptive immunity. Therefore, the tolerogenic mechanisms concurring in the oral mucosa are intertwined. Here, we review them systematically, paying special attention to the role of oral epithelial cells.


Microbiology ◽  
2010 ◽  
Vol 156 (10) ◽  
pp. 3052-3064 ◽  
Author(s):  
S. Suwannakul ◽  
G. P. Stafford ◽  
S. A. Whawell ◽  
C. W. I. Douglas

Bistable populations of bacteria give rise to two or more subtypes that exhibit different phenotypes. We have explored whether the periodontal pathogen Porphyromonas gingivalis exhibits bistable invasive phenotypes. Using a modified cell invasion assay, we show for the first time that there are two distinct subtypes within a population of P. gingivalis strains NCTC 11834 and W50 that display differences in their ability to invade oral epithelial cells. The highly invasive subtype invades cells at 10–30-fold higher levels than the poorly invasive subtype and remains highly invasive for approximately 12–16 generations. Analysis of the gingipain activity of these subtypes revealed that the highly invasive type had reduced cell-associated arginine-specific protease activity. The role of Arg-gingipain activity in invasion was verified by enhancement of invasion by rgpAB mutations and by inclusion of an Arg-gingipain inhibitor in invasion assays using wild-type bacteria. In addition, a population of ΔrgpAB bacteria did not contain a hyperinvasive subtype. Screening of the protease activity of wild-type populations of both strains identified high and low protease subtypes which also showed a corresponding reduction or enhancement, respectively, of invasive capabilities. Microarray analysis of these bistable populations revealed a putative signature set of genes that includes oxidative stress resistance and iron transport genes, and which might be critical to invasion of or survival within epithelial cells.


1997 ◽  
Vol 65 (5) ◽  
pp. 1980-1984 ◽  
Author(s):  
T Njoroge ◽  
R J Genco ◽  
H T Sojar ◽  
N Hamada ◽  
C A Genco

2014 ◽  
Vol 103 (2) ◽  
pp. 555-563 ◽  
Author(s):  
Hiromichi Yumoto ◽  
Katsuhiko Hirota ◽  
Kouji Hirao ◽  
Tsuyoshi Miyazaki ◽  
Nobuyuki Yamamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document