scholarly journals Terminal Impact Time Control Cooperative Guidance Law for UAVs under Time-Varying Velocity

Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 100
Author(s):  
Zhanyuan Jiang ◽  
Jianquan Ge ◽  
Qiangqiang Xu ◽  
Tao Yang

Aiming at the problem that multiple Unmanned Aerial Vehicles (UAVs) attack the stationary target cooperatively under time-varying velocity, the cooperative guidance law with finite time convergence on two-dimensional plan and the three-dimensional cooperative guidance laws with impact time constraint are designed separately in this paper. Firstly, based on the relative motion equation between UAV and target on two-dimensional plane, the time cooperative guidance model of multiple UAVs is established. Then based on the consistency theory and graph theory, a distributed time cooperative guidance law is designed, which can ensure that the impact time of all UAVs can be quickly consistent in a limited time. Next, the cooperative guidance problem is expanded from two-dimensional plane to three-dimensional space, the motion model between UAV and target in three-dimensional space is established and the expression of time-to-go estimation under time-varying velocity is derived. Finally, according to whether there is the communication among UAVs under the condition of time-varying velocity, a multiple UAVs three-dimensional cooperative guidance law based on desired impact time and a multiple UAVs three-dimensional cooperative guidance law based on coordination variables are designed, respectively. The simulation results show that the cooperative guidance law with finite time convergence on two-dimensional plan and the three-dimensional cooperative guidance law with impact time constraint proposed in this paper are effective, which can both realize the saturation attack under the time-varying velocity.

Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 231
Author(s):  
Zhanyuan Jiang ◽  
Jianquan Ge ◽  
Qiangqiang Xu ◽  
Tao Yang

The paper proposes a two-dimensional impact time control cooperative guidance law under constant velocity and a three-dimensional impact time control cooperative guidance law under time-varying velocity, which can both improve the penetration ability and combat effectiveness of multi-missile systems and adapt to the complex and variable future warfare. First, a more accurate time-to-go estimation method is proposed, and based on which a modified proportional navigational guidance (MPNG) law with impact time constraint is designed in this paper, which is also effective when the initial leading angle is zero. Second, adopting cooperative guidance architecture with centralized coordination, using the MPNG law as the local guidance, and the desired impact time as the coordination variables, a two-dimensional impact time control cooperative guidance law under constant velocity is designed. Finally, a method of solving the expression of velocity is derived, and the analytic function of velocity with respect to time is given, a three-dimensional impact time control cooperative guidance law under time-varying velocity based on desired impact time is designed. Numerical simulation results verify the feasibility and applicability of the methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chang-sheng Gao ◽  
Jian-qing Li ◽  
Wu-xing Jing

A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29755-29763
Author(s):  
Mu Lin ◽  
Xiangjun Ding ◽  
Chunyan Wang ◽  
Li Liang ◽  
Jianan Wang

Author(s):  
Helena Bidnichenko

The paper presents a method for geometric modelling of a four-dimensional ball. For this, the regularities of the change in the shape of the projections of simple geometric images of two-dimensional and three-dimensional spaces during rotation are considered. Rotations of a segment and a circle around an axis are considered; it is shown that during rotation the shape of their projections changes from the maximum value to the degenerate projection. It was found that the set of points of the degenerate projection belongs to the axis of rotation, and each n-dimensional geometric image during rotation forms a body of a higher dimension, that is, one that belongs to (n + 1) -dimensional space. Identified regularities are extended to the four-dimensional space in which the ball is placed. It is shown that the axis of rotation of the ball will be a degenerate projection in the form of a circle, and the ball, when rotating, changes its size from a volumetric object to a flat circle, then increases again, but in the other direction (that is, it turns out), and then in reverse order to its original position. This rotation is more like a deformation, and such a ball of four-dimensional space is a hypersphere. For geometric modelling of the hypersphere and the possibility of its projection image, the article uses the vector model proposed by P.V. Filippov. The coordinate system 0xyzt is defined. The algebraic equation of the hypersphere is given by analogy with the three-dimensional space along certain coordinates of the center a, b, c, d. A variant of hypersection at t = 0 is considered, which confirms by equations obtaining a two-dimensional ball of three-dimensional space, a point (a ball of zero radius), which coincides with the center of the ball, or an imaginary ball. For the variant t = d, the equation of a two-dimensional ball is obtained, in which the radius is equal to R and the coordinates of all points along the 0t axis are equal to d. The variant of hypersection t = k turned out to be interesting, in which the equation of a two-dimensional sphere was obtained, in which the coordinates of all points along the 0t axis are equal to k, and the radius is . Horizontal vector projections of hypersection are constructed for different values of k. It is concluded that the set of horizontal vector projections of hypersections at t = k defines an ellipse.  


2015 ◽  
Vol 11 (9) ◽  
pp. 47
Author(s):  
Feng Wu ◽  
Jiang Zhu ◽  
Yilong Tian ◽  
Zhipeng Xi

Network capacity has been widely studied in recent years. However, most of the literatures focus on the networks where nodes are distributed in a two-dimensional space. In this paper, we propose a 3D hybrid sensor network model. By setting different sensor node distribution probabilities for cells, we divide all the cells in the network into dense cells and sparse cells. Analytical expressions of the aggregate throughput capacity are obtained. We also find that suitable inhomogeneity can increase the network throughput capacity.


2013 ◽  
Vol 36 (5) ◽  
pp. 569-570 ◽  
Author(s):  
Homare Yamahachi ◽  
May-Britt Moser ◽  
Edvard I. Moser

AbstractThe suggestion that three-dimensional space is represented by a mosaic of neural map fragments, each covering a small area of space in the plane of locomotion, receives support from studies in complex two-dimensional environments. How map fragments are linked, which brain circuits are involved, and whether metric is preserved across fragments are questions that remain to be determined.


2013 ◽  
Vol 48 (4) ◽  
pp. 141-145 ◽  
Author(s):  
Bartlomiej Oszczak ◽  
Eliza Sitnik

ABSTRACT During the process of satellite navigation, and also in the many tasks of classical positioning, we need to calculate the corrections to the initial (or approximate) location of the point using precise measurement of distances to the permanent points of reference (reference points). In this paper the authors have provided a way of developing Hausbrandt's equations, on the basis of which the exact coordinates of the point in two-dimensional space can be determined by using the computed correction to the coordinates of the auxiliary point. The authors developed generalised equations for threedimensional space introducing additional fixed point and have presented proof of derived formulas.


2015 ◽  
Vol 92 (4) ◽  
Author(s):  
Merlin A. Etzold ◽  
Peter J. McDonald ◽  
David A. Faux ◽  
Alexander F. Routh

Sign in / Sign up

Export Citation Format

Share Document