scholarly journals Effect of Cold Rolling on the Phase Transformation Kinetics of an Al0.5CoCrFeNi High-Entropy Alloy

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 917 ◽  
Author(s):  
Jun Wang ◽  
Haoxue Yang ◽  
Tong Guo ◽  
Jiaxiang Wang ◽  
William Yi Wang ◽  
...  

The solid state phase transformation kinetics of as-cast and cold rolling deformed Al0.5CoCrFeNi high-entropy alloys have been investigated by the thermal expansion method. The phase transformed volume fractions are determined from the thermal expansion curve using the lever rule method, and the deformed sample exhibits a much higher transformation rate. Two kinetic parameters, activation energy (E) and kinetic exponent (n) are determined using Kissinger– Akahira–Sunose (KAS) and Johnson–Mehl–Avrami (JMA) method, respectively. Results show that a pre-deformed sample shows a much lower activation energy and higher kinetic exponent compared with the as-cast sample, which are interpreted based on the deformation induced defects that can promote the nucleation and growth process during phase transformation.

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1015
Author(s):  
Jun Wang ◽  
Chen Wei ◽  
Haoxue Yang ◽  
Tong Guo ◽  
Tingting Xu ◽  
...  

The phase transformation kinetics of a face-centered-cubic (FCC) Al0.25CoCrFeNi high-entropy alloy during isochronal heating is investigated by thermal dilation experiment. The phase transformed volume fraction is determined from the thermal expansion curve, and results show that the phase transition is controlled by diffusion controlled nucleation-growth mechanism. The kinetic parameters, activation energy and kinetic exponent are determined based on Kissinger–Akahira–Sunose (KAS) and Johnson–Mehl–Avrami (JMA) method, respectively. The activation energy and kinetic exponent determined are almost constant, indicating a stable and slow speed of phase transition in the FCC Al0.25CoCrFeNi high-entropy alloy. During the main transformation process, the kinetic exponent shows that the phase transition is diffusion controlled process without nucleation during the transformation.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
H. Mehranpour ◽  
M. Askari ◽  
M. Sasani Ghamsari ◽  
H. Farzalibeik

Titanium dioxide nanopowders were synthesized by the diffusion controlled sol-gel process (LaMer model) and characterized by DTA-TG, XRD, and SEM. The preparedTiO2nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks on the base of Avrami equation. The stating point of anatase-rutile phase transformation temperature in the prepared nanoparticles was found between 100 and200°C. A decreasing trend on the intensity of X-ray peaks of anatase phase was observed up to600°Cwhen the presence of the rutile phase became predominant. Results indicated that the transition kinetics of the diffusion controlled prepared nanoparticles was begun at low temperature, and it can be concluded that the nucleation and growth sites in these particles were more than other. However, it has been found that the nucleation activation energy of rutile phase was 20 kj/mol, and it is the lowest reported activation energy.


2018 ◽  
Vol 67 (7) ◽  
pp. 070204
Author(s):  
Chong Tao ◽  
Wang Gui-Ji ◽  
Tan Fu-Li ◽  
Zhao Jian-Heng ◽  
Tang Zhi-Ping

Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 166 ◽  
Author(s):  
Chunhe Chu ◽  
Yuman Qin ◽  
Xuemei Li ◽  
Zhinan Yang ◽  
Fucheng Zhang ◽  
...  

The two-step austempering process has been reported to be an effective method to accelerate the bainitic transformation process by introducing martensite (Q-M-B). However, in this study, it was found that the Q-M-B process reduced the incubation time, but the transformation duration remained nearly unchanged. The notably reduced activation energy barrier for nucleation of bainitic ferrite on the preformed martensite should be responsible for the reduced duration time of the Q-M-B process. A process that both of the two steps were above, Ms (Q-B-B), has been demonstrated to increase transformation rate and improve the amount of bainitic ferrite, which probably results from the additional hysteresis free energy provided by the first quenching process.


2010 ◽  
Vol 132 (21) ◽  
pp. 7478-7487 ◽  
Author(s):  
Nikos Tasios ◽  
Christos Grigoriadis ◽  
Michael Ryan Hansen ◽  
Henrike Wonneberger ◽  
Chen Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document