scholarly journals Application of a Novel Adaptive Med Fault Diagnosis Method in Gearboxes

Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1106
Author(s):  
Wenhua Du ◽  
Xiaoming Guo ◽  
Xiaofeng Han ◽  
Junyuan Wang ◽  
Jie Zhou ◽  
...  

Minimum entropy deconvolution (MED) is not effective in extracting fault features in strong noise environments, which can easily lead to misdiagnosis. Moreover, the noise reduction effect of MED is affected by the size of the filter. In the face of different vibration signals, the size of the filter is not adaptive. In order to improve the efficiency of MED fault feature extraction, this paper proposes a firefly optimization algorithm (FA) to improve the MED fault diagnosis method. Firstly, the original vibration signal is stratified by white noise-assisted singular spectral decomposition (SSD), and the stratified signal components are divided into residual signal components and noisy signal components by a detrended fluctuation analysis (DFA) algorithm. Then, the noisy components are preprocessed by an autoregressive (AR) model. Secondly, the envelope spectral entropy is proposed as the fitness function of the FA algorithm, and the filter size of MED is optimized by the FA algorithm. Finally, the preprocessed signal is denoised and the pulse enhanced with the proposed adaptive MED. The new method is validated by simulation experiments and practical engineering cases. The application results show that this method improves the shortcomings of MED and can extract fault features more effectively than the traditional MED method.

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1041 ◽  
Author(s):  
Yang Liu ◽  
Lixiang Duan ◽  
Zhuang Yuan ◽  
Ning Wang ◽  
Jianping Zhao

The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have three issues, including separating the useful frequency bands from overlapped signals, extracting fault features with strong subjectivity, and processing the massive data with limited learning abilities. To address the above issues, this paper, which is based on the idea of deep learning, proposed an intelligent fault diagnosis method combining Local Mean Decomposition (LMD) and the Stack Denoising Autoencoder (SDAE). The vibration signal is firstly decomposed by LMD and reconstructed based on the cross-correlation criterion. The virtual noise channel is constructed to reduce the noise of the vibration signal. Then, the de-noised signal is input into the trained SDAE model to learn the fault features adaptively. Finally, the conditions of the reciprocating compressor valve are classified by the proposed method. The results show that classification accuracy is 92.72% under the condition of a low signal-noise ratio, which is 5 percentage points higher than that of the traditional methods. This shows the effectiveness and robustness of the proposed method.


2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
ChengJiang Zhou ◽  
Jun Ma ◽  
Jiande Wu ◽  
Zezhong Feng

The nonstationary components and noises contained in the bearing vibration signal make it particularly difficult to extract fault features, and minimum entropy deconvolution (MED), maximum correlated kurtosis deconvolution (MCKD), and fast spectral kurtosis (FSK) cannot achieve satisfactory results. However, the filter size and period range of multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) need to be set in advance, so it is difficult to achieve satisfactory filtering results. Aiming at these problems, a parameter adaptive MOMEDA feature extraction method based on grasshopper optimization algorithm (GOA) is proposed. Firstly, the multipoint kurtosis (MKurt) of MOMEDA filtered signal is used as the optimization objective, and the optimal filter size and periodic initial value which matched with the vibration signal can be determined adaptively through multiple iterations of GOA. Secondly, the periodic impact contained in the vibration signal is extracted by the optimized MOMEDA, and the fault features in the impact signal are extracted by Hilbert envelope demodulation. Finally, the simulation signal and bearing signal are processed by the proposed approach. The results show that the introduction of GOA not only solves the problem of parameter selection in MOMEDA, but also achieves better performance compared with other optimization methods. Meanwhile, the feasibility and superiority of the approach are fully proved by comparing it with the three methods MED, MCKD, and FSK after parameter optimization. Therefore, this approach provides a novel way and solution for fault diagnosis of the rolling bearing, gear, and shaft.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1402
Author(s):  
Xiaoan Yan ◽  
Yadong Xu ◽  
Daoming She ◽  
Wan Zhang

When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 593 ◽  
Author(s):  
Guiji Tang ◽  
Bin Pang ◽  
Yuling He ◽  
Tian Tian

The accurate fault diagnosis of gearboxes is of great significance for ensuring safe and efficient operation of rotating machinery. This paper develops a novel fault diagnosis method based on hierarchical instantaneous energy density dispersion entropy (HIEDDE) and dynamic time warping (DTW). Specifically, the instantaneous energy density (IED) analysis based on singular spectrum decomposition (SSD) and Hilbert transform (HT) is first applied to the vibration signal of gearbox to acquire the IED signal, which is designed to reinforce the fault feature of the signal. Then, the hierarchical dispersion entropy (HDE) algorithm developed in this paper is used to quantify the complexity of the IED signal to obtain the HIEDDE as fault features. Finally, the DTW algorithm is employed to recognize the fault types automatically. The validity of the two parts that make up the HIEDDE algorithm, i.e., the IED analysis for fault features enhancement and the HDE algorithm for quantifying the information of signals, is numerically verified. The proposed method recognizes the fault patterns of the experimental data of gearbox accurately and exhibits advantages over the existing methods such as multi-scale dispersion entropy (MDE) and refined composite MDE (RCMDE).


2013 ◽  
Vol 380-384 ◽  
pp. 1029-1034 ◽  
Author(s):  
Zhan Dong Bi ◽  
Yong Chen ◽  
Zhi Zhao Peng ◽  
Yu Zhang

As the most important transmission system of vehicles, the gearbox has a high fault rate, so it is meaningful to evaluate and diagnose its health condition and faults accurately. Autocorrelation -envelope analysis is a fault diagnosis method that can suppress the noise and reserve the periodic components of vibration signals. A conclusion has been deduced: amplitude modulated, frequency modulated, or amplitude& frequency modulated signals can be transformed into amplitude modulated signals with the same modulation frequency through autocorrelation processing. Therefore, the aucorrelation-envelope technique is suitable for extracting the fault features of gearbox from its vibration signal with the coexistence of amplitude modulation and frequency modulation. The simulation results verify the validity of the conclusion and the experiment of vehicle gearbox diagnosis indicates the effectiveness of this method.


2014 ◽  
Vol 1014 ◽  
pp. 501-504 ◽  
Author(s):  
Shu Guo ◽  
You Cai Xu ◽  
Xin Shi Li ◽  
Ran Tao ◽  
Kun Li ◽  
...  

In order to discover the fault with roller bearing in time, a new fault diagnosis method based on Empirical mode decomposition (EMD) and BP neural network is put forward in the paper. First, we get the fault signal through experiments. Then we use EMD to decompose the vibration signal into a series of single signals. We can extract main fault information from the single signals. The kurtosis coefficient of the single signals forms a feature vector which is used as the input data of the BP neural network. The trained BP neural network can be used for fault identification. Through analyzing, BP neural network can distinguish the fault into normal state, inner race fault, outer race fault. The results show that this method can gain very stable classification performance and good computational efficiency.


2013 ◽  
Vol 333-335 ◽  
pp. 1684-1687
Author(s):  
Bin Wu ◽  
Song He Zhang ◽  
Yue Gang Luo ◽  
Shan Ping Yu

Due to the feature and the forms of motion of the gears, the vibration signal of the gear is mainly the frequency modulation, amplitude modulation, or hybrid modulation signal corresponding to the gear-mesh frequency and its double frequency signal. When faults arise on the gears, the number and shape of the modulation sideband will be changed. The structures and forms of the FM composition differ according to the type of faults. According to the above mentioned characteristic, this essay raises a method to disassemble the gear vibrate signal, points out the formulas to build up characteristic vector, on that basis, the essay raised a gear fault diagnosis method based on EMD and Hidden Markov Model (HMM), this method can identify the working condition of the normal gears, snaggletooth gears, and pitting gears.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zong Yuan ◽  
Taotao Zhou ◽  
Jie Liu ◽  
Changhe Zhang ◽  
Yong Liu

The key to fault diagnosis of rotating machinery is to extract fault features effectively and select the appropriate classification algorithm. As a common signal decomposition method, the effect of wavelet packet decomposition (WPD) largely depends on the applicability of the wavelet basis function (WBF). In this paper, a novel fault diagnosis approach for rotating machinery based on feature importance ranking and selection is proposed. Firstly, a two-step principle is proposed to select the most suitable WBF for the vibration signal, based on which an optimized WPD (OWPD) method is proposed to decompose the vibration signal and extract the fault information in the frequency domain. Secondly, FE is utilized to extract fault features of the decomposed subsignals of OWPD. Thirdly, the categorical boosting (CatBoost) algorithm is introduced to rank the fault features by a certain strategy, and the optimal feature set is further utilized to identify and diagnose the fault types. A hybrid dataset of bearing and rotor faults and an actual dataset of the one-stage reduction gearbox are utilized for experimental verification. Experimental results indicate that the proposed approach can achieve higher fault diagnosis accuracy using fewer features under complex working conditions.


2012 ◽  
Vol 224 ◽  
pp. 493-496 ◽  
Author(s):  
Huai Long Wang ◽  
Qiang Pan ◽  
Hong Liu

In order to improve the speed and the rate of fault diagnosis in mixed circuit, this paper introduces a new fault diagnosis method. Through extracting fault features of current characteristics effectively and applying to Improved SVM, the ability of pattern recognition will be better than the traditional BP Neural Network and Single SVM, especially in small samples or non-linear cases. Meanwhile, this paper presents the lifting wavelet transform in order to obtain the feature information accurately. The accuracy of fault diagnosis can greatly enhance by discussing the Improved SVM combined with lifting wavelet transform in a specific monostable trigger. That points out a new direction for the fault diagnosis of mixed circuit.


Sign in / Sign up

Export Citation Format

Share Document