scholarly journals Sample Entropy Combined with the K-Means Clustering Algorithm Reveals Six Functional Networks of the Brain

Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1156 ◽  
Author(s):  
Yanbing Jia ◽  
Huaguang Gu

Identifying brain regions contained in brain functional networks and functions of brain functional networks is of great significance in understanding the complexity of the human brain. The 160 regions of interest (ROIs) in the human brain determined by the Dosenbach’s template have been divided into six functional networks with different functions. In the present paper, the complexity of the human brain is characterized by the sample entropy (SampEn) of dynamic functional connectivity (FC) which is obtained by analyzing the resting-state functional magnetic resonance imaging (fMRI) data acquired from healthy participants. The 160 ROIs are clustered into six clusters by applying the K-means clustering algorithm to the SampEn of dynamic FC as well as the static FC which is also obtained by analyzing the resting-state fMRI data. The six clusters obtained from the SampEn of dynamic FC and the static FC show very high overlap and consistency ratios with the six functional networks. Furthermore, for four of six clusters, the overlap ratios corresponding to the SampEn of dynamic FC are larger than that corresponding to the static FC, and for five of six clusters, the consistency ratios corresponding to the SampEn of dynamic FC are larger than that corresponding to the static FC. The results show that the combination of machine learning methods and the FC obtained using the blood oxygenation level-dependent (BOLD) signals can identify the functional networks of the human brain, and nonlinear dynamic characteristics of the FC are more effective than the static characteristics of the FC in identifying brain functional networks and the complexity of the human brain.

2021 ◽  
Author(s):  
Hongming Li ◽  
Srinivasan Dhivya ◽  
Zaixu Cui ◽  
Chuanjun Zhuo ◽  
Raquel E. Gur ◽  
...  

ABSTRACTA novel self-supervised deep learning (DL) method is developed for computing bias-free, personalized brain functional networks (FNs) that provide unique opportunities to better understand brain function, behavior, and disease. Specifically, convolutional neural networks with an encoder-decoder architecture are employed to compute personalized FNs from resting-state fMRI data without utilizing any external supervision by optimizing functional homogeneity of personalized FNs in a self-supervised setting. We demonstrate that a DL model trained on fMRI scans from the Human Connectome Project can identify canonical FNs and generalizes well across four different datasets. We further demonstrate that the identified personalized FNs are informative for predicting individual differences in behavior, brain development, and schizophrenia status. Taken together, self-supervised DL allows for rapid, generalizable computation of personalized FNs.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82715 ◽  
Author(s):  
Guihua Jiang ◽  
Xue Wen ◽  
Yingwei Qiu ◽  
Ruibin Zhang ◽  
Junjing Wang ◽  
...  

2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2017 ◽  
Author(s):  
Matthieu Gilson

AbstractSince the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping - determined by EC - for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data - movie viewing versus resting state - illustrates that changes in excitability and changes in brain coordination go hand in hand.


2020 ◽  
Author(s):  
Nan Xu ◽  
Peter C. Doerschuk ◽  
Shella D. Keilholz ◽  
R. Nathan Spreng

AbstractThe macro-scale intrinsic functional network architecture of the human brain has been well characterized. Early studies revealed robust and enduring patterns of static connectivity, while more recent work has begun to explore the temporal dynamics of these large-scale brain networks. Little work to date has investigated directed connectivity within and between these networks, or the temporal patterns of afferent (input) and efferent (output) connections between network nodes. Leveraging a novel analytic approach, prediction correlation, we investigated the causal interactions within and between large-scale networks of the brain using resting-state fMRI. This technique allows us to characterize information transfer between brain regions in both the spatial (direction) and temporal (duration) scales. Using data from the Human Connectome Project (N=200) we applied prediction correlation techniques to four resting state fMRI runs (total TRs = 4800). Three central observations emerged. First, the strongest and longest duration connections were observed within the somatomotor, visual and dorsal attention networks. Second, the short duration connections were observed for high-degree nodes in the visual and default networks, as well as in hippocampus. Specifically, the connectivity profile of the highest-degree nodes was dominated by efferent connections to multiple cortical areas. Moderate high-degree nodes, particularly in hippocampal regions, showed an afferent connectivity profile. Finally, multimodal association nodes in lateral prefrontal brain regions demonstrated a short duration, bidirectional connectivity profile, consistent with this region’s role in integrative and modulatory processing. These results provide novel insights into the spatiotemporal dynamics of human brain function.


Sign in / Sign up

Export Citation Format

Share Document