scholarly journals Melanoma and Nevus Skin Lesion Classification Using Handcraft and Deep Learning Feature Fusion via Mutual Information Measures

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 484 ◽  
Author(s):  
Jose-Agustin Almaraz-Damian ◽  
Volodymyr Ponomaryov ◽  
Sergiy Sadovnychiy ◽  
Heydy Castillejos-Fernandez

In this paper, a new Computer-Aided Detection (CAD) system for the detection and classification of dangerous skin lesions (melanoma type) is presented, through a fusion of handcraft features related to the medical algorithm ABCD rule (Asymmetry Borders-Colors-Dermatoscopic Structures) and deep learning features employing Mutual Information (MI) measurements. The steps of a CAD system can be summarized as preprocessing, feature extraction, feature fusion, and classification. During the preprocessing step, a lesion image is enhanced, filtered, and segmented, with the aim to obtain the Region of Interest (ROI); in the next step, the feature extraction is performed. Handcraft features such as shape, color, and texture are used as the representation of the ABCD rule, and deep learning features are extracted using a Convolutional Neural Network (CNN) architecture, which is pre-trained on Imagenet (an ILSVRC Imagenet task). MI measurement is used as a fusion rule, gathering the most important information from both types of features. Finally, at the Classification step, several methods are employed such as Linear Regression (LR), Support Vector Machines (SVMs), and Relevant Vector Machines (RVMs). The designed framework was tested using the ISIC 2018 public dataset. The proposed framework appears to demonstrate an improved performance in comparison with other state-of-the-art methods in terms of the accuracy, specificity, and sensibility obtained in the training and test stages. Additionally, we propose and justify a novel procedure that should be used in adjusting the evaluation metrics for imbalanced datasets that are common for different kinds of skin lesions.

2021 ◽  
pp. 1063293X2198894
Author(s):  
Prabira Kumar Sethy ◽  
Santi Kumari Behera ◽  
Nithiyakanthan Kannan ◽  
Sridevi Narayanan ◽  
Chanki Pandey

Paddy is an essential nutrient worldwide. Rice gives 21% of worldwide human per capita energy and 15% of per capita protein. Asia represented 60% of the worldwide populace, about 92% of the world’s rice creation, and 90% of worldwide rice utilization. With the increase in population, the demand for rice is increased. So, the productivity of farming is needed to be enhanced by introducing new technology. Deep learning and IoT are hot topics for research in various fields. This paper suggested a setup comprising deep learning and IoT for monitoring of paddy field remotely. The vgg16 pre-trained network is considered for the identification of paddy leaf diseases and nitrogen status estimation. Here, two strategies are carried out to identify images: transfer learning and deep feature extraction. The deep feature extraction approach is combined with a support vector machine (SVM) to classify images. The transfer learning approach of vgg16 for identifying four types of leaf diseases and prediction of nitrogen status results in 79.86% and 84.88% accuracy. Again, the deep features of Vgg16 and SVM results for identifying four types of leaf diseases and prediction of nitrogen status have achieved an accuracy of 97.31% and 99.02%, respectively. Besides, a framework is suggested for monitoring of paddy field remotely based on IoT and deep learning. The suggested prototype’s superiority is that it controls temperature and humidity like the state-of-the-art and can monitor the additional two aspects, such as detecting nitrogen status and diseases.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Ramin Keivani ◽  
Sina Faizollahzadeh Ardabili ◽  
Farshid Aram

Deep learning (DL) and machine learning (ML) methods have recently contributed to the advancement of models in the various aspects of prediction, planning, and uncertainty analysis of smart cities and urban development. This paper presents the state of the art of DL and ML methods used in this realm. Through a novel taxonomy, the advances in model development and new application domains in urban sustainability and smart cities are presented. Findings reveal that five DL and ML methods have been most applied to address the different aspects of smart cities. These are artificial neural networks; support vector machines; decision trees; ensembles, Bayesians, hybrids, and neuro-fuzzy; and deep learning. It is also disclosed that energy, health, and urban transport are the main domains of smart cities that DL and ML methods contributed in to address their problems.


2020 ◽  
Vol 37 (5) ◽  
pp. 812-822
Author(s):  
Behnam Asghari Beirami ◽  
Mehdi Mokhtarzade

In this paper, a novel feature extraction technique called SuperMNF is proposed, which is an extension of the minimum noise fraction (MNF) transformation. In SuperMNF, each superpixel has its own transformation matrix and MNF transformation is performed on each superpixel individually. The basic idea behind the SuperMNF is that each superpixel contains its specific signal and noise covariance matrices which are different from the adjacent superpixels. The extracted features, owning spatial-spectral content and provided in the lower dimension, are classified by maximum likelihood classifier and support vector machines. Experiments that are conducted on two real hyperspectral images, named Indian Pines and Pavia University, demonstrate the efficiency of SuperMNF since it yielded more promising results than some other feature extraction methods (MNF, PCA, SuperPCA, KPCA, and MMP).


2021 ◽  
Vol 39 (4) ◽  
pp. 1190-1197
Author(s):  
Y. Ibrahim ◽  
E. Okafor ◽  
B. Yahaya

Manual grid-search tuning of machine learning hyperparameters is very time-consuming. Hence, to curb this problem, we propose the use of a genetic algorithm (GA) for the selection of optimal radial-basis-function based support vector machine (RBF-SVM) hyperparameters; regularization parameter C and cost-factor γ. The resulting optimal parameters were used during the training of face recognition models. To train the models, we independently extracted features from the ORL face image dataset using local binary patterns (handcrafted) and deep learning architectures (pretrained variants of VGGNet). The resulting features were passed as input to either linear-SVM or optimized RBF-SVM. The results show that the models from optimized RBFSVM combined with deep learning or hand-crafted features yielded performances that surpass models obtained from Linear-SVM combined with the aforementioned features in most of the data splits. The study demonstrated that it is profitable to optimize the hyperparameters of an SVM to obtain the best classification performance. Keywords: Face Recognition, Feature Extraction, Local Binary Patterns, Transfer Learning, Genetic Algorithm and Support Vector  Machines.


Sign in / Sign up

Export Citation Format

Share Document