scholarly journals Lognormality in Turbulence Energy Spectra

Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 669
Author(s):  
Taewoo Lee

The maximum entropy principle states that the energy distribution will tend toward a state of maximum entropy under the physical constraints, such as the zero energy at the boundaries and a fixed total energy content. For the turbulence energy spectra, a distribution function that maximizes entropy with these physical constraints is a lognormal function due to its asymmetrical descent to zero energy at the boundary lengths scales. This distribution function agrees quite well with the experimental data over a wide range of energy and length scales. For turbulent flows, this approach is effective since the energy and length scales are determined primarily by the Reynolds number. The total turbulence kinetic energy will set the height of the distribution, while the ratio of length scales will determine the width. This makes it possible to reconstruct the power spectra using the Reynolds number as a parameter.

2009 ◽  
Vol 635 ◽  
pp. 103-136 ◽  
Author(s):  
N. HUTCHINS ◽  
T. B. NICKELS ◽  
I. MARUSIC ◽  
M. S. CHONG

Careful reassessment of new and pre-existing data shows that recorded scatter in the hot-wire-measured near-wall peak in viscous-scaled streamwise turbulence intensity is due in large part to the simultaneous competing effects of the Reynolds number and viscous-scaled wire length l+. An empirical expression is given to account for these effects. These competing factors can explain much of the disparity in existing literature, in particular explaining how previous studies have incorrectly concluded that the inner-scaled near-wall peak is independent of the Reynolds number. We also investigate the appearance of the so-called outer peak in the broadband streamwise intensity, found by some researchers to occur within the log region of high-Reynolds-number boundary layers. We show that the ‘outer peak’ is consistent with the attenuation of small scales due to large l+. For turbulent boundary layers, in the absence of spatial resolution problems, there is no outer peak up to the Reynolds numbers investigated here (Reτ = 18830). Beyond these Reynolds numbers – and for internal geometries – the existence of such peaks remains open to debate. Fully mapped energy spectra, obtained with a range of l+, are used to demonstrate this phenomenon. We also establish the basis for a ‘maximum flow frequency’, a minimum time scale that the full experimental system must be capable of resolving, in order to ensure that the energetic scales are not attenuated. It is shown that where this criterion is not met (in this instance due to insufficient anemometer/probe response), an outer peak can be reproduced in the streamwise intensity even in the absence of spatial resolution problems. It is also shown that attenuation due to wire length can erode the region of the streamwise energy spectra in which we would normally expect to see kx−1 scaling. In doing so, we are able to rationalize much of the disparity in pre-existing literature over the kx−1 region of self-similarity. Not surprisingly, the attenuated spectra also indicate that Kolmogorov-scaled spectra are subject to substantial errors due to wire spatial resolution issues. These errors persist to wavelengths far beyond those which we might otherwise assume from simple isotropic assumptions of small-scale motions. The effects of hot-wire length-to-diameter ratio (l/d) are also briefly investigated. For the moderate wire Reynolds numbers investigated here, reducing l/d from 200 to 100 has a detrimental effect on measured turbulent fluctuations at a wide range of energetic scales, affecting both the broadband intensity and the energy spectra.


1999 ◽  
Vol 121 (3) ◽  
pp. 551-557 ◽  
Author(s):  
S. W. Burd ◽  
T. W. Simon

To date, very little attention has been devoted to the scales and turbulence energy spectra of coolant exiting from film cooling holes. Length-scale documentation and spectral measurements have primarily been concerned with the free-stream flow with which the coolant interacts. Documentation of scales and energy decomposition of the coolant flow leads to more complete understanding of this important flow and the mechanisms by which it disperses and mixes with the free stream. CFD modeling of the emerging flow can use these data as verification that flow computations are accurate. To address this need, spectral measurements were taken with single-sensor, hot-wire anemometry at the exit plane of film cooling holes. Energy spectral distributions and length scales calculated from these distributions are presented for film cooling holes of different lengths and for coolant supply plenums of different geometries. Measurements are presented on the hole streamwise centerline at the center of the hole, one-half diameter upstream of center, and one-half diameter downstream of center. The data highlight some fundamental differences in energy content, dominant frequencies, and scales with changes in the hole and plenum geometries. Coolant flowing through long holes exhibits smoothly distributed spectra as might be anticipated in fully developed tube flows. Spectra from short-hole flows, however, show dominant frequencies.


1975 ◽  
Vol 68 (4) ◽  
pp. 639-672 ◽  
Author(s):  
A. Ibbetson ◽  
D. J. Tritton

Experiments have been carried out to investigate the effect of rotation of the whole system on decaying turbulence, generally similar to grid turbulence, generated in air in an annular container on a rotating table. Measurements to determine the structure of the turbulence were made during its decay, mean quantities being determined by a mixture of time and ensemble averaging. Quantities measured (as functions of time after the turbulence generation) were turbulence intensities perpendicular to and parallel to the rotation axis, spectra of these two components with respect to a wavenumber perpendicular to the rotation axis, and some correlation coefficients, selected to detect differences in length scales perpendicular and parallel to the rotation axis. The intensity measurements were made for a wide range of rotation rates; the other measurements were made at a single rotation rate (selected to give a Rossby number varying during the decay from about 1 to small values) and, for comparison, at zero rotation. Subsidiary experiments were carried out to measure the spin-up time of the system, and to determine whether the turbulence produced any mean flow relative to the container.A principal result is that increasing the rotation rate produces faster decay of the turbulence; the nature of the additional energy sink is an important part of the interpretation. Other features of the results are as follows: the measurements with-outrotation can be satisfactorily related to wind-tunnel measurements; even with rotation, the ratio of the intensities in the two directions remains substantially constant; the normalized spectra for the rotating and the non-rotating cases show surprising similarity but do contain slight systematic differences, consistent with the length scales indicated by the correlations; rotation produces a large increase in the length scale parallel to the rotation axis and a smaller increase in that perpendicular to it; the turbulence produces no measurable mean flow.A model for the interpretation of the results is developed in terms of the action of inertial waves in carrying energy to the boundaries of the enclosure, where it is dissipated in viscous boundary layers. The model provides satisfactory explanations of the overall decay of the turbulence and of the decay of individual spectral components. Transfer of energy between wavenumbers plays a much less significant role in the dynamics of decay than in a non-rotating fluid. The relationship of the model to the interpretation of the length-scale difference in terms of the Taylor-Proudman theorem is discussed.The model implies that the overall dimensions of the system enter in an important way into the dynamics. This imposes a serious limitation on the application of the results to the geophysical situations at which experiments of this type are aimed.The paper includes some discussion of the possibility of energy transfer from the turbulence to a mean motion (the ‘vorticity expulsion’ hypothesis). It is possible, on the basis of the observations, to exclude this process as the additional turbulence energy sink. But this does not provide any evidence either for or against the hypothesis in the conditions for which it has been postulated.


2016 ◽  
Vol 809 ◽  
pp. 793-820 ◽  
Author(s):  
Ashish Patel ◽  
Bendiks J. Boersma ◽  
Rene Pecnik

The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel is studied by means of direct numerical simulation of the low-Mach-number approximation of the Navier–Stokes equations. Different constitutive relations for density $\unicode[STIX]{x1D70C}$ and viscosity $\unicode[STIX]{x1D707}$ as a function of temperature are used in order to mimic a wide range of fluid behaviours and to develop a generalised framework for studying turbulence modulations in variable-property flows. Instead of scaling the velocity solely based on local density, as done for the van Driest transformation, we derive an extension of the scaling that is based on gradients of the semilocal Reynolds number, defined as $Re_{\unicode[STIX]{x1D70F}}^{\star }\equiv Re_{\unicode[STIX]{x1D70F}}\sqrt{(\overline{\unicode[STIX]{x1D70C}}/\overline{\unicode[STIX]{x1D70C}}_{w})}/(\overline{\unicode[STIX]{x1D707}}/\overline{\unicode[STIX]{x1D707}}_{w})$ (the bar and subscript $w$ denote Reynolds averaging and wall value respectively, while $Re_{\unicode[STIX]{x1D70F}}$ is the friction Reynolds number based on wall values). This extension of the van Driest transformation is able to collapse velocity profiles for flows with near-wall property gradients as a function of the semilocal wall coordinate. However, flow quantities like mixing length, turbulence anisotropy and turbulent vorticity fluctuations do not show a universal scaling very close to the wall. This is attributed to turbulence modulations, which play a crucial role in the evolution of turbulent structures and turbulence energy transfer. We therefore investigate the characteristics of streamwise velocity streaks and quasistreamwise vortices and find that, similarly to turbulence statistics, the turbulent structures are also strongly governed by $Re_{\unicode[STIX]{x1D70F}}^{\star }$ profiles and that their dependence on individual density and viscosity profiles is minor. Flows with near-wall gradients in $Re_{\unicode[STIX]{x1D70F}}^{\star }$ ($\text{d}Re_{\unicode[STIX]{x1D70F}}^{\star }/\text{d}y\neq 0$) show significant changes in inclination and tilting angles of quasistreamwise vortices. These structural changes are responsible for the observed modulation of the Reynolds stress generation mechanism and the inter-component energy transfer in flows with strong near-wall $Re_{\unicode[STIX]{x1D70F}}^{\star }$ gradients.


Author(s):  
Steven W. Burd ◽  
Terrence W. Simon

To date, very little attention has been devoted to the scales and turbulence energy spectra of coolant exiting from film cooling holes. Length scale documentation and spectral measurements have primarily been concerned with the freestream flow with which the coolant interacts. Documentation of scales and energy decomposition of the coolant flow leads to more complete understanding of this important flow and the mechanisms by which it disperses and mixes with the freestream. CFD modeling of the emerging flow can use these data as verification that flow computations are accurate. To address this need, spectral measurements were taken with single-sensor, hot-wire anemometry at the exit plane of film cooling holes. Energy spectral distributions and length scales calculated from these distributions are presented for film cooling holes of different lengths and for coolant supply plenums of different geometries. Measurements are presented on the hole streamwise centerline at the center of the hole, one-half diameter upstream of center, and one-half diameter downstream of center. The data highlight some fundamental differences in energy content, dominant frequencies, and scales with changes in the hole and plenum geometries. Coolant flowing through long holes exhibits smoothly-distributed spectra as might be anticipated in fully-developed tube flows. Spectra from short-hole flows, however, show dominant frequencies.


Author(s):  
Sven-Erik Ekström ◽  
Paris Vassalos

AbstractIt is known that the generating function f of a sequence of Toeplitz matrices {Tn(f)}n may not describe the asymptotic distribution of the eigenvalues of Tn(f) if f is not real. In this paper, we assume as a working hypothesis that, if the eigenvalues of Tn(f) are real for all n, then they admit an asymptotic expansion of the same type as considered in previous works, where the first function, called the eigenvalue symbol $\mathfrak {f}$ f , appearing in this expansion is real and describes the asymptotic distribution of the eigenvalues of Tn(f). This eigenvalue symbol $\mathfrak {f}$ f is in general not known in closed form. After validating this working hypothesis through a number of numerical experiments, we propose a matrix-less algorithm in order to approximate the eigenvalue distribution function $\mathfrak {f}$ f . The proposed algorithm, which opposed to previous versions, does not need any information about neither f nor $\mathfrak {f}$ f is tested on a wide range of numerical examples; in some cases, we are even able to find the analytical expression of $\mathfrak {f}$ f . Future research directions are outlined at the end of the paper.


Author(s):  
G. Rossini ◽  
A. Caimi ◽  
A. Redaelli ◽  
E. Votta

AbstractA Finite Element workflow for the multiscale analysis of the aortic valve biomechanics was developed and applied to three physiological anatomies with the aim of describing the aortic valve interstitial cells biomechanical milieu in physiological conditions, capturing the effect of subject-specific and leaflet-specific anatomical features from the organ down to the cell scale. A mixed approach was used to transfer organ-scale information down to the cell-scale. Displacement data from the organ model were used to impose kinematic boundary conditions to the tissue model, while stress data from the latter were used to impose loading boundary conditions to the cell level. Peak of radial leaflet strains was correlated with leaflet extent variability at the organ scale, while circumferential leaflet strains varied over a narrow range of values regardless of leaflet extent. The dependency of leaflet biomechanics on the leaflet-specific anatomy observed at the organ length-scale is reflected, and to some extent emphasized, into the results obtained at the lower length-scales. At the tissue length-scale, the peak diastolic circumferential and radial stresses computed in the fibrosa correlated with the leaflet surface area. At the cell length-scale, the difference between the strains in two main directions, and between the respective relationships with the specific leaflet anatomy, was even more evident; cell strains in the radial direction varied over a relatively wide range ($$0.36-0.87$$ 0.36 - 0.87 ) with a strong correlation with the organ length-scale radial strain ($$R^{2}= 0.95$$ R 2 = 0.95 ); conversely, circumferential cell strains spanned a very narrow range ($$0.75-0.88$$ 0.75 - 0.88 ) showing no correlation with the circumferential strain at the organ level ($$R^{2}= 0.02$$ R 2 = 0.02 ). Within the proposed simulation framework, being able to account for the actual anatomical features of the aortic valve leaflets allowed to gain insight into their effect on the structural mechanics of the leaflets at all length-scales, down to the cell scale.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 776 ◽  
Author(s):  
Robert K. Niven ◽  
Markus Abel ◽  
Michael Schlegel ◽  
Steven H. Waldrip

The concept of a “flow network”—a set of nodes and links which carries one or more flows—unites many different disciplines, including pipe flow, fluid flow, electrical, chemical reaction, ecological, epidemiological, neurological, communications, transportation, financial, economic and human social networks. This Feature Paper presents a generalized maximum entropy framework to infer the state of a flow network, including its flow rates and other properties, in probabilistic form. In this method, the network uncertainty is represented by a joint probability function over its unknowns, subject to all that is known. This gives a relative entropy function which is maximized, subject to the constraints, to determine the most probable or most representative state of the network. The constraints can include “observable” constraints on various parameters, “physical” constraints such as conservation laws and frictional properties, and “graphical” constraints arising from uncertainty in the network structure itself. Since the method is probabilistic, it enables the prediction of network properties when there is insufficient information to obtain a deterministic solution. The derived framework can incorporate nonlinear constraints or nonlinear interdependencies between variables, at the cost of requiring numerical solution. The theoretical foundations of the method are first presented, followed by its application to a variety of flow networks.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


Sign in / Sign up

Export Citation Format

Share Document