scholarly journals Monitoring the Evolution of Asynchrony between Mean Arterial Pressure and Mean Cerebral Blood Flow via Cross-Entropy Methods

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 80
Author(s):  
Alberto Porta ◽  
Francesca Gelpi ◽  
Vlasta Bari ◽  
Beatrice Cairo ◽  
Beatrice De De Maria ◽  
...  

Cerebrovascular control is carried out by multiple nonlinear mechanisms imposing a certain degree of coupling between mean arterial pressure (MAP) and mean cerebral blood flow (MCBF). We explored the ability of two nonlinear tools in the information domain, namely cross-approximate entropy (CApEn) and cross-sample entropy (CSampEn), to assess the degree of asynchrony between the spontaneous fluctuations of MAP and MCBF. CApEn and CSampEn were computed as a function of the translation time. The analysis was carried out in 23 subjects undergoing recordings at rest in supine position (REST) and during active standing (STAND), before and after surgical aortic valve replacement (SAVR). We found that at REST the degree of asynchrony raised, and the rate of increase in asynchrony with the translation time decreased after SAVR. These results are likely the consequence of the limited variability of MAP observed after surgery at REST, more than the consequence of a modified cerebrovascular control, given that the observed differences disappeared during STAND. CApEn and CSampEn can be utilized fruitfully in the context of the evaluation of cerebrovascular control via the noninvasive acquisition of the spontaneous MAP and MCBF variability.

1985 ◽  
Vol 63 (6) ◽  
pp. 937-943 ◽  
Author(s):  
David J. Boarini ◽  
Neal F. Kassell ◽  
James A. Sprowell ◽  
Julie J. Olin ◽  
Hans C. Coester

✓ Profound arterial hypotension is à commonly used adjunct in surgery for aneurysms and arteriovenous malformations. Hyperventilation with hypocapnia is also used in these patients to increase brain slackness. Both measures reduce cerebral blood flow (CBF). Of concern is whether CBF is reduced below ischemic thresholds when both techniques are employed together. To determine this, 12 mongrel dogs were anesthetized with morphine, nitrous oxide, and oxygen, and then paralyzed with pancuronium and hyperventilated. Arterial pCO2 was controlled by adding CO2 to the inspired gas mixture. Cerebral blood flow was measured at arterial pCO2 levels of 40 and 20 mm Hg both before and after mean arterial pressure was lowered to 40 mm Hg with adenosine enhanced by dipyridamole. In animals where PaCO2 was reduced to 20 mm Hg and mean arterial pressure was reduced to 40 mm Hg, cardiac index decreased 42% from control and total brain blood flow decreased 45% from control while the cerebral metabolic rate of oxygen was unchanged. Hypocapnia with hypotension resulted in small but statistically significant reductions in all regional blood flows, most notably in the brain stem. The reported effects of hypocapnia on CBF during arterial hypotension vary depending on the hypotensive agents used. Profound hypotension induced with adenosine does not eliminate CO2 reactivity, nor does it lower blood flow to ischemic levels in this model, even in the presence of severe hypocapnia.


2010 ◽  
Vol 30 (11) ◽  
pp. 1883-1889 ◽  
Author(s):  
Allyson R Zazulia ◽  
Tom O Videen ◽  
John C Morris ◽  
William J Powers

Studies in transgenic mice overexpressing amyloid precursor protein (APP) demonstrate impaired autoregulation of cerebral blood flow (CBF) to changes in arterial pressure and suggest that cerebrovascular dysfunction may be critically important in the development of pathological Alzheimer's disease (AD). Given the relevance of such a finding for guiding hypertension treatment in the elderly, we assessed autoregulation in individuals with AD. Twenty persons aged 75±6 years with very mild or mild symptomatic AD (Clinical Dementia Rating 0.5 or 1.0) underwent 15O-positron emission tomography (PET) CBF measurements before and after mean arterial pressure (MAP) was lowered from 107±13 to 92±9 mm Hg with intravenous nicardipine; 11C-PIB-PET imaging and magnetic resonance imaging (MRI) were also obtained. There were no significant differences in mean CBF before and after MAP reduction in the bilateral hemispheres (−0.9±5.2 mL per 100 g per minute, P=0.4, 95% confidence interval (CI)=−3.4 to 1.5), cortical borderzones (−1.9±5.0 mL per 100 g per minute, P=0.10, 95% CI=−4.3 to 0.4), regions of T2W-MRI-defined leukoaraiosis (−0.3±4.4 mL per 100 g per minute, P=0.85, 95% CI=−3.3 to 3.9), or regions of peak 11C-PIB uptake (−2.5±7.7 mL per 100 g per minute, P=0.30, 95% CI=−7.7 to 2.7). The absence of significant change in CBF with a 10 to 15 mm Hg reduction in MAP within the normal autoregulatory range demonstrates that there is neither a generalized nor local defect of autoregulation in AD.


1999 ◽  
Vol 91 (3) ◽  
pp. 677-677 ◽  
Author(s):  
Basil F. Matta ◽  
Karen J. Heath ◽  
Kate Tipping ◽  
Andrew C. Summors

Background The effect of volatile anesthetics on cerebral blood flow depends on the balance between the indirect vasoconstrictive action secondary to flow-metabolism coupling and the agent's intrinsic vasodilatory action. This study compared the direct cerebral vasodilatory actions of 0.5 and 1.5 minimum alveolar concentration (MAC) sevoflurane and isoflurane during an propofol-induced isoelectric electroencephalogram. Methods Twenty patients aged 20-62 yr with American Society of Anesthesiologists physical status I or II requiring general anesthesia for routine spinal surgery were recruited. In addition to routine monitoring, a transcranial Doppler ultrasound was used to measure blood flow velocity in the middle cerebral artery, and an electroencephalograph to measure brain electrical activity. Anesthesia was induced with propofol 2.5 mg/kg, fentanyl 2 micro/g/kg, and atracurium 0.5 mg/kg, and a propofol infusion was used to achieve electroencephalographic isoelectricity. End-tidal carbon dioxide, blood pressure, and temperature were maintained constant throughout the study period. Cerebral blood flow velocity, mean blood pressure, and heart rate were recorded after 20 min of isoelectric encephalogram. Patients were then assigned to receive either age-adjusted 0.5 MAC (0.8-1%) or 1.5 MAC (2.4-3%) end-tidal sevoflurane; or age-adjusted 0.5 MAC (0.5-0.7%) or 1.5 MAC (1.5-2%) end-tidal isoflurane. After 15 min of unchanged end-tidal concentration, the variables were measured again. The concentration of the inhalational agent was increased or decreased as appropriate, and all measurements were repeated again. All measurements were performed before the start of surgery. An infusion of 0.01% phenylephrine was used as necessary to maintain mean arterial pressure at baseline levels. Results Although both agents increased blood flow velocity in the middle cerebral artery at 0.5 and 1.5 MAC, this increase was significantly less during sevoflurane anesthesia (4+/-3 and 17+/-3% at 0.5 and 1.5 MAC sevoflurane; 19+/-3 and 72+/-9% at 0.5 and 1.5 MAC isoflurane [mean +/- SD]; P<0.05). All patients required phenylephrine (100-300 microg) to maintain mean arterial pressure within 20% of baseline during 1.5 MAC anesthesia. Conclusions In common with other volatile anesthetic agents, sevoflurane has an intrinsic dose-dependent cerebral vasodilatory effect. However, this effect is less than that of isoflurane.


2020 ◽  
pp. 0271678X2096745
Author(s):  
Zhao Liming ◽  
Sun Weiliang ◽  
Jia Jia ◽  
Liang Hao ◽  
Liu Yang ◽  
...  

Our aim was to determine the impact of targeted blood pressure modifications on cerebral blood flow in ischemic moyamoya disease patients assessed by single-photon emission computed tomography (SPECT). From March to September 2018, we prospectively collected data of 154 moyamoya disease patients and selected 40 patients with ischemic moyamoya disease. All patients underwent in-hospital blood pressure monitoring to determine the mean arterial pressure baseline values. The study cohort was subdivided into two subgroups: (1) Group A or relative high blood pressure (RHBP) with an induced mean arterial pressure 10–20% higher than baseline and (2) Group B or relative low blood pressure (RLBP) including patients with mean arterial pressure 10–20% lower than baseline. All patients underwent initial SPECT study on admission-day, and on the following day, every subgroup underwent a second SPECT study under their respective targeted blood pressure values. In general, RHBP patients showed an increment in perfusion of 10.13% (SD 2.94%), whereas RLBP patients showed a reduction of perfusion of 12.19% (SD 2.68%). Cerebral blood flow of moyamoya disease patients is susceptible to small blood pressure changes, and cerebral autoregulation might be affected due to short dynamic blood pressure modifications.


1999 ◽  
Vol 91 (5) ◽  
pp. 1387-1387 ◽  
Author(s):  
Hulya Sungurtekin ◽  
Walter Plöchl ◽  
David J. Cook

Background Cerebral embolization is a primary cause of cardiac surgical neurologic morbidity. During cardiopulmonary bypass (CPB), there are well-defined periods of embolic risk. In theory, cerebral embolization might be reduced by an increase in pump flow during these periods. The purpose of this study was to determine the CPB flow-embolization relation in a canine model. Methods Twenty mongrel dogs underwent CPB at 35 degrees C with alpha-stat management and a fentanyl-midazolam anesthetic. In each animal, CPB flow was adjusted to achieve a mean arterial pressure of 65-75 mmHg. During CPB, an embolic load of 1.2 x 10(5) 67 microm fluorescent microspheres was injected into the arterial inflow line. Before and after embolization, cerebral blood flow was determined using 15-microm microspheres. Tissue was taken from 12 brain regions and microspheres were recovered. The relation between pump flow and embolization/g of brain was determined. Results The mean arterial pressure at embolization was 67 +/-4 mmHg, and the range of pump flow was 0.9-3.5 l x min(-1)x m(-2). Cerebral blood flow was independent of pump flow. At lower pump flow, the percentage of that flow delivered to the brain increased. There was a strong inverse relation between pump flow and cerebral embolization (r = -0.708, P < 0.000 by Spearman rank order correlation). Conclusions Cerebral embolization is determined by the CPB flow. At an unchanged mean arterial pressure, as pump flow is reduced, a progressively greater proportion of that flow is delivered to the brain.


1993 ◽  
Vol 264 (6) ◽  
pp. H2136-H2140 ◽  
Author(s):  
M. A. Hajdu ◽  
R. T. McElmurry ◽  
D. D. Heistad ◽  
G. L. Baumbach

The purpose of this study was to examine effects of aging on responses of large cerebral arteries to serotonin. We measured cerebral microvascular pressure (with a micropipette and servo-null method), diameter of pial arterioles, and cerebral blood flow (microspheres) in adult (12- to 14-mo-old, n = 15) and aged (24- to 27-mo-old, n = 14) Wistar rats. Responses to intra-atrial infusion of serotonin (5 and 50 micrograms.kg-1.min-1) were examined. Infusion of the low dose of serotonin decreased mean arterial pressure and pial arteriolar pressure in adult and aged rats to similar levels. Cerebral blood flow was not reduced in adult or aged rats during infusion of the low dose of serotonin. The high dose of serotonin did not affect mean arterial pressure but reduced pial arteriolar pressure [from 46 +/- 4 to 23 +/- 2 (SE) in adult rats and from 52 +/- 3 to 18 +/- 4 mmHg in aged rats]. The high dose of serotonin increased large-artery resistance from 0.9 +/- 0.1 to 1.6 +/- 0.2 in adult rats and from 0.9 +/- 0.1 to 2.7 +/- 0.6 mmHg.ml-1.min.100 g in aged rats. Cerebral blood flow was reduced significantly in aged rats (from 59 +/- 3 to 41 +/- 6 ml.min-1.100 g-1), but not in adult rats, during infusion of the high dose of serotonin. We conclude that aging augments constrictor responses of large cerebral arteries to intravascular serotonin, which results in a reduction of cerebral blood flow in aged but not adult rats.


Sign in / Sign up

Export Citation Format

Share Document