scholarly journals Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications

2021 ◽  
Vol 2 (3) ◽  
pp. 413-427
Author(s):  
Nader Almufleh ◽  
Amani Al-Othman ◽  
Zaid Alani ◽  
Mohammad H. Al-Sayah ◽  
Hasan Al-Nashash

Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm2. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility.

1997 ◽  
Vol 28 (4) ◽  
pp. 138-146
Author(s):  
L. P. Kruger

The findings of an empirical research project show that the majority of so-called large South African manufacturers acknowledge that manufacturing-based strategies enhance the competitive capabilities and advantages of their firms and that this contributes to long-term, superior business performance and success. They also recognize that superior manufacturing capabilities will be prerequisites for the improvement on both their national and international competitive positions in the future. To better their positions in these markets, the manufacturers need to shift their emphasis (in order of priority) to: (1) high quality, low cost and high dependability, all of priority number (1); (2) high speed; and (3) high flexibility. they also need to improve on their current performance levels in all of these strategic manufacturing priorities by an average of between 20% and 30%.


2000 ◽  
Vol 638 ◽  
Author(s):  
Jan W. De Blauwe ◽  
Marty L. Green ◽  
Tom W. Sorsch ◽  
Garry R. Weber ◽  
Jeff D. Bude ◽  
...  

AbstractThis paper describes the fabrication, and structural and electrical characterization of a new, aerosol-nanocrystal floating-gate FET, aimed at non-volatile memory (NVM) applications. This aerosol- nanocrystal NVM device features program/erase characteristics comparable to conventional stacked gate NVM devices, excellent endurance (>105 P/E cycles), and long-term non-volatility in spite of a thin bottom oxide (55-60Å). In addition, a very simple fabrication process makes this aerosol-nanocrystal NVM device a potential candidate for low cost NVM applications.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2725 ◽  
Author(s):  
Ana Cisnal ◽  
Frank R. R. Ihmig ◽  
Juan-Carlos Fraile ◽  
Javier Pérez-Turiel ◽  
Víctor Muñoz-Martinez

Depending on their use, electrodes must have a certain size and design so as not to compromise their electrical characteristics. It is fundamental to be aware of all dependences on external factors that vary the electrochemical characteristics of the electrodes. When using implantable electrodes, the maximum charge injection capacity (CIC) is the total amount of charge that can be injected into the tissue in a reversible way. It is fundamental to know the relations between the characteristics of the microelectrode itself and its maximum CIC in order to develop microelectrodes that will be used in biomedical applications. CIC is a very complex measure that depends on many factors: material, size (geometric and effectiveness area), and shape of the implantable microelectrode and long-term behavior, composition, and temperature of the electrolyte. In this paper, our previously proposed measurement setup and automated calculation method are used to characterize a graphene microelectrode and to measure the behavior of a set of microelectrodes that have been developed in the Fraunhofer Institute for Biomedical Engineering (IBMT) labs. We provide an electrochemical evaluation of CIC for these microelectrodes by examining the role of the following variables: pulse width of the stimulation signal, electrode geometry and size, roughness factor, solution, and long-term behavior. We hope the results presented in this paper will be useful for future studies and for the manufacture of advanced implantable microelectrodes.


2020 ◽  
Vol 6 (3) ◽  
pp. 414-417
Author(s):  
Wolfram Schmidt ◽  
Carsten Tautorat ◽  
Klaus-Peter Schmitz ◽  
Niels Grabow ◽  
Frank Kamke ◽  
...  

AbstractImpedance spectroscopy represents a basic operating principle for biomedical sensors, bioimpedance spectroscopy, electrochemical analyses and for characterization of functional biomaterials. For automated long-term investigations, an impedance analyzer for multi-channel testing of up to eight passive two-pole networks is presented in this paper. Its operating system is application-specific adapted to the required test functionalities and measuring ranges. Measurements are based on a commercially available integrated impedance converter circuit. Our current analyzer setup is capable of measuring impedance values from 50 kΩ up to 10 MΩ with automated range selection for most accurate results. The impedance under test is excited with a single frequency of 1 kHz. An impedance accuracy of 1.5 % was determined in reference measurements. The presented impedance analyzer is a low cost system ready for use particularly in long-term characterization of dielectric networks, such as material properties, with multiple samples.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

Author(s):  
Bruno Furtado de Moura ◽  
francisco sepulveda ◽  
Jorge Luis Jorge Acevedo ◽  
Wellington Betencurte da Silva ◽  
Rogerio Ramos ◽  
...  

Author(s):  
Vyacheslav A. Denisov ◽  
Aleksandr Yu. Kostyukov ◽  
Roman N. Zadorozhniy

One of the most promising technologies for restoring machine parts and cylinder liners is electric spark treatment as the most versatile technology that provides high-quality restoration of worn parts with wear up to 0.5 mm. (Research purpose) The research purpose is in developing a technology for restoring various cylinder liners by means of electric spark processing, selecting optimal modes and electrode materials that allow improving the quality of repair and increasing the post-repair life of the sleeve. (Materials and methods) It was taken into account when conducting research aimed at restoring the geometric parameters of the sleeve, that the coating must have sufficient adhesion strength to the surface of the sleeve under mechanical, thermal loads and long-term operation. Laboratory studies of the adhesion strength of electric spark coatings on the separation (adhesive) and on the cut, as well as tribotechnical studies of interfaces were conducted. Authors have found by analyzing the results of operational tests of restored and new cylinder liners the prospects for using electric spark treatment of worn parts, including diesel engine liners. (Results and discussion) It was shown by laboratory studies of the adhesion strength of electric spark coatings with a 0.2 mm thick BrMKc 3-1 electrode to the working surface of cylinder liners that their separation strength (adhesive) was 20-40 megapascals, and the shear strength (cohesive) was 50-80 megapascals. It was found that this provides the required functional strength of coatings with maximum operational load. The article presents the results of comprehensive research in graphs and tables. (Conclusions) The research conducted in the CCP "Nano-Center" of the FSAC VIM and operational tests in the 2nd bus fleet of Moscow confirmed the principal possibility of effectively restoring cast iron liners (blocks) using the technology of electric spark processing.


Sign in / Sign up

Export Citation Format

Share Document