scholarly journals Efficient Stain-Aware Nuclei Segmentation Deep Learning Framework for Multi-Center Histopathological Images

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 954
Author(s):  
Loay Hassan ◽  
Mohamed Abdel-Nasser ◽  
Adel Saleh ◽  
Osama A. Omer ◽  
Domenec Puig

Existing nuclei segmentation methods have obtained limited results with multi-center and multi-organ whole-slide images (WSIs) due to the use of different stains, scanners, overlapping, clumped nuclei, and the ambiguous boundary between adjacent cell nuclei. In an attempt to address these problems, we propose an efficient stain-aware nuclei segmentation method based on deep learning for multi-center WSIs. Unlike all related works that exploit a single-stain template from the dataset to normalize WSIs, we propose an efficient algorithm to select a set of stain templates based on stain clustering. Individual deep learning models are trained based on each stain template, and then, an aggregation function based on the Choquet integral is employed to combine the segmentation masks of the individual models. With a challenging multi-center multi-organ WSIs dataset, the experimental results demonstrate that the proposed method outperforms the state-of-art nuclei segmentation methods with aggregated Jaccard index (AJI) and F1-scores of 73.23% and 89.32%, respectively, while achieving a lower number of parameters.

2021 ◽  
Vol 38 (3) ◽  
pp. 653-661
Author(s):  
Loay Hassan ◽  
Adel Saleh ◽  
Mohamed Abdel-Nasser ◽  
Osama A. Omer ◽  
Domenec Puig

Automated cell nuclei delineation in whole-slide imaging (WSI) is a fundamental step for many tasks like cancer cell recognition, cancer grading, and cancer subtype classification. Although numerous computational methods have been proposed for segmenting nuclei in WSI images based on image processing and deep learning, existing approaches face major challenges such as color variation due to the use of different stains, the various structures of cell nuclei, and the overlapping and clumped cell nuclei. To circumvent these challenges in this article, we propose an efficient and accurate cell nuclei segmentation method based on deep learning, in which a set of accurate individual cell nuclei segmentation models are developed to predict rough segmentation masks, and then a learnable aggregation network (LANet) is used to predict the final nuclei masks. Besides, we develop cell nuclei segmentation software (with a graphical user interface—GUI) that includes the proposed method and other deep-learning-based cell nuclei segmentation methods. A challenging WSI dataset collected from different centers and organs is used to demonstrate the efficiency of our method. The experimental results reveal that our method obtains a competitive performance compared to the existing approaches in terms of the aggregated Jaccard index (AJI=89.25%) and F1-score (F1=73.02%). The developed nuclei segmentation software can be downloaded from https://github.com/loaysh2010/Cell-Nuclei-Segmentation-GUI-Application.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaodong Wang ◽  
Ying Chen ◽  
Yunshu Gao ◽  
Huiqing Zhang ◽  
Zehui Guan ◽  
...  

AbstractN-staging is a determining factor for prognostic assessment and decision-making for stage-based cancer therapeutic strategies. Visual inspection of whole-slides of intact lymph nodes is currently the main method used by pathologists to calculate the number of metastatic lymph nodes (MLNs). Moreover, even at the same N stage, the outcome of patients varies dramatically. Here, we propose a deep-learning framework for analyzing lymph node whole-slide images (WSIs) to identify lymph nodes and tumor regions, and then to uncover tumor-area-to-MLN-area ratio (T/MLN). After training, our model’s tumor detection performance was comparable to that of experienced pathologists and achieved similar performance on two independent gastric cancer validation cohorts. Further, we demonstrate that T/MLN is an interpretable independent prognostic factor. These findings indicate that deep-learning models could assist not only pathologists in detecting lymph nodes with metastases but also oncologists in exploring new prognostic factors, especially those that are difficult to calculate manually.


2020 ◽  
Vol 10 (2) ◽  
pp. 615 ◽  
Author(s):  
Tomas Iesmantas ◽  
Agne Paulauskaite-Taraseviciene ◽  
Kristina Sutiene

(1) Background: The segmentation of cell nuclei is an essential task in a wide range of biomedical studies and clinical practices. The full automation of this process remains a challenge due to intra- and internuclear variations across a wide range of tissue morphologies, differences in staining protocols and imaging procedures. (2) Methods: A deep learning model with metric embeddings such as contrastive loss and triplet loss with semi-hard negative mining is proposed in order to accurately segment cell nuclei in a diverse set of microscopy images. The effectiveness of the proposed model was tested on a large-scale multi-tissue collection of microscopy image sets. (3) Results: The use of deep metric learning increased the overall segmentation prediction by 3.12% in the average value of Dice similarity coefficients as compared to no metric learning. In particular, the largest gain was observed for segmenting cell nuclei in H&E -stained images when deep learning network and triplet loss with semi-hard negative mining were considered for the task. (4) Conclusion: We conclude that deep metric learning gives an additional boost to the overall learning process and consequently improves the segmentation performance. Notably, the improvement ranges approximately between 0.13% and 22.31% for different types of images in the terms of Dice coefficients when compared to no metric deep learning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew Lagree ◽  
Majidreza Mohebpour ◽  
Nicholas Meti ◽  
Khadijeh Saednia ◽  
Fang-I. Lu ◽  
...  

AbstractBreast cancer is currently the second most common cause of cancer-related death in women. Presently, the clinical benchmark in cancer diagnosis is tissue biopsy examination. However, the manual process of histopathological analysis is laborious, time-consuming, and limited by the quality of the specimen and the experience of the pathologist. This study's objective was to determine if deep convolutional neural networks can be trained, with transfer learning, on a set of histopathological images independent of breast tissue to segment tumor nuclei of the breast. Various deep convolutional neural networks were evaluated for the study, including U-Net, Mask R-CNN, and a novel network (GB U-Net). The networks were trained on a set of Hematoxylin and Eosin (H&E)-stained images of eight diverse types of tissues. GB U-Net demonstrated superior performance in segmenting sites of invasive diseases (AJI = 0.53, mAP = 0.39 & AJI = 0.54, mAP = 0.38), validated on two hold-out datasets exclusively containing breast tissue images of approximately 7,582 annotated cells. The results of the networks, trained on images independent of breast tissue, demonstrated that tumor nuclei of the breast could be accurately segmented.


2020 ◽  
Vol 34 (07) ◽  
pp. 12677-12684
Author(s):  
Jingru Yi ◽  
Hui Tang ◽  
Pengxiang Wu ◽  
Bo Liu ◽  
Daniel J. Hoeppner ◽  
...  

Instance segmentation of biological images is essential for studying object behaviors and properties. The challenges, such as clustering, occlusion, and adhesion problems of the objects, make instance segmentation a non-trivial task. Current box-free instance segmentation methods typically rely on local pixel-level information. Due to a lack of global object view, these methods are prone to over- or under-segmentation. On the contrary, the box-based instance segmentation methods incorporate object detection into the segmentation, performing better in identifying the individual instances. In this paper, we propose a new box-based instance segmentation method. Mainly, we locate the object bounding boxes from their center points. The object features are subsequently reused in the segmentation branch as a guide to separate the clustered instances within an RoI patch. Along with the instance normalization, the model is able to recover the target object distribution and suppress the distribution of neighboring attached objects. Consequently, the proposed model performs excellently in segmenting the clustered objects while retaining the target object details. The proposed method achieves state-of-the-art performances on three biological datasets: cell nuclei, plant phenotyping dataset, and neural cells.


Sign in / Sign up

Export Citation Format

Share Document