Cell nuclei segmentation in divergent images using deep learning and stochastic processing

Author(s):  
Qing Wu ◽  
Shiyu Xu ◽  
Hui Zhang ◽  
Xuyang Shi
2020 ◽  
Vol 10 (2) ◽  
pp. 615 ◽  
Author(s):  
Tomas Iesmantas ◽  
Agne Paulauskaite-Taraseviciene ◽  
Kristina Sutiene

(1) Background: The segmentation of cell nuclei is an essential task in a wide range of biomedical studies and clinical practices. The full automation of this process remains a challenge due to intra- and internuclear variations across a wide range of tissue morphologies, differences in staining protocols and imaging procedures. (2) Methods: A deep learning model with metric embeddings such as contrastive loss and triplet loss with semi-hard negative mining is proposed in order to accurately segment cell nuclei in a diverse set of microscopy images. The effectiveness of the proposed model was tested on a large-scale multi-tissue collection of microscopy image sets. (3) Results: The use of deep metric learning increased the overall segmentation prediction by 3.12% in the average value of Dice similarity coefficients as compared to no metric learning. In particular, the largest gain was observed for segmenting cell nuclei in H&E -stained images when deep learning network and triplet loss with semi-hard negative mining were considered for the task. (4) Conclusion: We conclude that deep metric learning gives an additional boost to the overall learning process and consequently improves the segmentation performance. Notably, the improvement ranges approximately between 0.13% and 22.31% for different types of images in the terms of Dice coefficients when compared to no metric deep learning.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 954
Author(s):  
Loay Hassan ◽  
Mohamed Abdel-Nasser ◽  
Adel Saleh ◽  
Osama A. Omer ◽  
Domenec Puig

Existing nuclei segmentation methods have obtained limited results with multi-center and multi-organ whole-slide images (WSIs) due to the use of different stains, scanners, overlapping, clumped nuclei, and the ambiguous boundary between adjacent cell nuclei. In an attempt to address these problems, we propose an efficient stain-aware nuclei segmentation method based on deep learning for multi-center WSIs. Unlike all related works that exploit a single-stain template from the dataset to normalize WSIs, we propose an efficient algorithm to select a set of stain templates based on stain clustering. Individual deep learning models are trained based on each stain template, and then, an aggregation function based on the Choquet integral is employed to combine the segmentation masks of the individual models. With a challenging multi-center multi-organ WSIs dataset, the experimental results demonstrate that the proposed method outperforms the state-of-art nuclei segmentation methods with aggregated Jaccard index (AJI) and F1-scores of 73.23% and 89.32%, respectively, while achieving a lower number of parameters.


2021 ◽  
Vol 38 (3) ◽  
pp. 653-661
Author(s):  
Loay Hassan ◽  
Adel Saleh ◽  
Mohamed Abdel-Nasser ◽  
Osama A. Omer ◽  
Domenec Puig

Automated cell nuclei delineation in whole-slide imaging (WSI) is a fundamental step for many tasks like cancer cell recognition, cancer grading, and cancer subtype classification. Although numerous computational methods have been proposed for segmenting nuclei in WSI images based on image processing and deep learning, existing approaches face major challenges such as color variation due to the use of different stains, the various structures of cell nuclei, and the overlapping and clumped cell nuclei. To circumvent these challenges in this article, we propose an efficient and accurate cell nuclei segmentation method based on deep learning, in which a set of accurate individual cell nuclei segmentation models are developed to predict rough segmentation masks, and then a learnable aggregation network (LANet) is used to predict the final nuclei masks. Besides, we develop cell nuclei segmentation software (with a graphical user interface—GUI) that includes the proposed method and other deep-learning-based cell nuclei segmentation methods. A challenging WSI dataset collected from different centers and organs is used to demonstrate the efficiency of our method. The experimental results reveal that our method obtains a competitive performance compared to the existing approaches in terms of the aggregated Jaccard index (AJI=89.25%) and F1-score (F1=73.02%). The developed nuclei segmentation software can be downloaded from https://github.com/loaysh2010/Cell-Nuclei-Segmentation-GUI-Application.


2021 ◽  
Author(s):  
Damian J. Matuszewski ◽  
Petter Ranefall

Creating manual annotations in a large number of images is a tedious bottleneck that limits deep learning use in many applications. Here, we present a study in which we used the output of a classical image analysis pipeline as labels when training a convolutional neural network (CNN). This may not only reduce the time experts spend annotating images but it may also lead to an improvement of results when compared to the output from the classical pipeline used in training. In our application, i.e., cell nuclei segmentation, we generated the annotations using CellProfiler (a tool for developing classical image analysis pipelines for biomedical applications) and trained on them a U-Net-based CNN model. The best model achieved a 0.96 dice-coefficient of the segmented Nuclei and a 0.84 object-wise Jaccard index which was better than the classical method used for generating the annotations by 0.02 and 0.34, respectively. Our experimental results show that in this application, not only such training is feasible but also that the deep learning segmentations are a clear improvement compared to the output from the classical pipeline used for generating the annotations.


Informatica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Elzbieta Budginaitė ◽  
Mindaugas Morkūnas ◽  
Arvydas Laurinavičius ◽  
Povilas Treigys

Author(s):  
Wan Azani Mustafa ◽  
Low Zhe Wei ◽  
Khairul Shakir Ab Rahman

Cervical cancer is a common cancer that affects women around the world, and it is also the most common cancer in the developing countries. The cancer burden has increased due to several factors, such as population growth and ageing. In the early century, the systematization of cervical cancer cells takes some time to process manually, and the result that comes out is also inaccurate. This article presents a new nucleus segmentation on pap smear cell images based on structured analysis or morphological approach. Morphology is a broad set of image processing operations that process images based on shape, size and structure. This operation applies a structural element of the image to create an output image of the same size. The most basic of these operations are dilation and erosion. The results of the numerical analysis indicate that the proposed method achieved about 94.38% (sensitivity), 82.56% (specificity) and 93% (accuracy). Also, the resulting performance was compared to a few existing techniques such as Bradley Method, Nick Method and Sauvola Method. The results presented here may facilitate improvements in the detection method of the pap smear cell image to resolve the time-consuming issue and support better system performance to prevent low precision result of the Human Papilloma Virus (HPV) stages. The main impact of this paper is will help the doctor to identify the patient disease based on Pap smear analysis such as cervical cancer and increase the percentages of accuracy compared to the conventional method. Successful implementation of the nucleus detection techniques on Pap smear image can become a standard technique for the diagnosis of various microbiological infections such as Malaria and Tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document