scholarly journals Monolingual and Cross-Lingual Intent Detection without Training Data in Target Languages

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1412
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Askars Salimbajevs ◽  
Raivis Skadiņš

Due to recent DNN advancements, many NLP problems can be effectively solved using transformer-based models and supervised data. Unfortunately, such data is not available in some languages. This research is based on assumptions that (1) training data can be obtained by the machine translating it from another language; (2) there are cross-lingual solutions that work without the training data in the target language. Consequently, in this research, we use the English dataset and solve the intent detection problem for five target languages (German, French, Lithuanian, Latvian, and Portuguese). When seeking the most accurate solutions, we investigate BERT-based word and sentence transformers together with eager learning classifiers (CNN, BERT fine-tuning, FFNN) and lazy learning approach (Cosine similarity as the memory-based method). We offer and evaluate several strategies to overcome the data scarcity problem with machine translation, cross-lingual models, and a combination of the previous two. The experimental investigation revealed the robustness of sentence transformers under various cross-lingual conditions. The accuracy equal to ~0.842 is achieved with the English dataset with completely monolingual models is considered our top-line. However, cross-lingual approaches demonstrate similar accuracy levels reaching ~0.831, ~0.829, ~0.853, ~0.831, and ~0.813 on German, French, Lithuanian, Latvian, and Portuguese languages.

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 270
Author(s):  
Hanqian Wu ◽  
Zhike Wang ◽  
Feng Qing ◽  
Shoushan Li

Though great progress has been made in the Aspect-Based Sentiment Analysis(ABSA) task through research, most of the previous work focuses on English-based ABSA problems, and there are few efforts on other languages mainly due to the lack of training data. In this paper, we propose an approach for performing a Cross-Lingual Aspect Sentiment Classification (CLASC) task which leverages the rich resources in one language (source language) for aspect sentiment classification in a under-resourced language (target language). Specifically, we first build a bilingual lexicon for domain-specific training data to translate the aspect category annotated in the source-language corpus and then translate sentences from the source language to the target language via Machine Translation (MT) tools. However, most MT systems are general-purpose, it non-avoidably introduces translation ambiguities which would degrade the performance of CLASC. In this context, we propose a novel approach called Reinforced Transformer with Cross-Lingual Distillation (RTCLD) combined with target-sensitive adversarial learning to minimize the undesirable effects of translation ambiguities in sentence translation. We conduct experiments on different language combinations, treating English as the source language and Chinese, Russian, and Spanish as target languages. The experimental results show that our proposed approach outperforms the state-of-the-art methods on different target languages.


2016 ◽  
Vol 22 (4) ◽  
pp. 627-653 ◽  
Author(s):  
RAZIEH RAHIMI ◽  
AZADEH SHAKERY ◽  
JAVID DADASHKARIMI ◽  
MOZHDEH ARIANNEZHAD ◽  
MOSTAFA DEHGHANI ◽  
...  

AbstractComparable corpora are key translation resources for both languages and domains with limited linguistic resources. The existing approaches for building comparable corpora are mostly based on ranking candidate documents in the target language for each source document using a cross-lingual retrieval model. These approaches also exploit other evidence of document similarity, such as proper names and publication dates, to build more reliable alignments. However, the importance of each evidence in the scores of candidate target documents is determined heuristically. In this paper, we employ a learning to rank method for ranking candidate target documents with respect to each source document. The ranking model is constructed by defining each evidence for similarity of bilingual documents as a feature whose weight is learned automatically. Learning feature weights can significantly improve the quality of alignments, because the reliability of features depends on the characteristics of both source and target languages of a comparable corpus. We also propose a method to generate appropriate training data for the task of building comparable corpora. We employed the proposed learning-based approach to build a multi-domain English–Persian comparable corpus which covers twelve different domains obtained from Open Directory Project. Experimental results show that the created alignments have high degrees of comparability. Comparison with existing approaches for building comparable corpora shows that our learning-based approach improves both quality and coverage of alignments.


2020 ◽  
Vol 34 (05) ◽  
pp. 8058-8065
Author(s):  
Katharina Kann ◽  
Samuel R. Bowman ◽  
Kyunghyun Cho

We propose to cast the task of morphological inflection—mapping a lemma to an indicated inflected form—for resource-poor languages as a meta-learning problem. Treating each language as a separate task, we use data from high-resource source languages to learn a set of model parameters that can serve as a strong initialization point for fine-tuning on a resource-poor target language. Experiments with two model architectures on 29 target languages from 3 families show that our suggested approach outperforms all baselines. In particular, it obtains a 31.7% higher absolute accuracy than a previously proposed cross-lingual transfer model and outperforms the previous state of the art by 1.7% absolute accuracy on average over languages.


2020 ◽  
Vol 34 (05) ◽  
pp. 9274-9281
Author(s):  
Qianhui Wu ◽  
Zijia Lin ◽  
Guoxin Wang ◽  
Hui Chen ◽  
Börje F. Karlsson ◽  
...  

For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.


2020 ◽  
pp. 016555152096278
Author(s):  
Rouzbeh Ghasemi ◽  
Seyed Arad Ashrafi Asli ◽  
Saeedeh Momtazi

With the advent of deep neural models in natural language processing tasks, having a large amount of training data plays an essential role in achieving accurate models. Creating valid training data, however, is a challenging issue in many low-resource languages. This problem results in a significant difference between the accuracy of available natural language processing tools for low-resource languages compared with rich languages. To address this problem in the sentiment analysis task in the Persian language, we propose a cross-lingual deep learning framework to benefit from available training data of English. We deployed cross-lingual embedding to model sentiment analysis as a transfer learning model which transfers a model from a rich-resource language to low-resource ones. Our model is flexible to use any cross-lingual word embedding model and any deep architecture for text classification. Our experiments on English Amazon dataset and Persian Digikala dataset using two different embedding models and four different classification networks show the superiority of the proposed model compared with the state-of-the-art monolingual techniques. Based on our experiment, the performance of Persian sentiment analysis improves 22% in static embedding and 9% in dynamic embedding. Our proposed model is general and language-independent; that is, it can be used for any low-resource language, once a cross-lingual embedding is available for the source–target language pair. Moreover, by benefitting from word-aligned cross-lingual embedding, the only required data for a reliable cross-lingual embedding is a bilingual dictionary that is available between almost all languages and the English language, as a potential source language.


2014 ◽  
Vol 102 (1) ◽  
pp. 93-104
Author(s):  
Ramasamy Loganathan ◽  
Mareček David ◽  
Žabokrtský Zdenčk

Abstract This paper revisits the projection-based approach to dependency grammar induction task. Traditional cross-lingual dependency induction tasks one way or the other, depend on the existence of bitexts or target language tools such as part-of-speech (POS) taggers to obtain reasonable parsing accuracy. In this paper, we transfer dependency parsers using only approximate resources, i.e., machine translated bitexts instead of manually created bitexts. We do this by obtaining the the source side of the text from a machine translation (MT) system and then apply transfer approaches to induce parser for the target languages. We further reduce the need for the availability of labeled target language resources by using unsupervised target tagger. We show that our approach consistently outperforms unsupervised parsers by a bigger margin (8.2% absolute), and results in similar performance when compared with delexicalized transfer parsers.


2018 ◽  
Vol 25 (1) ◽  
pp. 43-67
Author(s):  
O. ZENNAKI ◽  
N. SEMMAR ◽  
L. BESACIER

AbstractThis work focuses on the rapid development of linguistic annotation tools for low-resource languages (languages that have no labeled training data). We experiment with several cross-lingual annotation projection methods using recurrent neural networks (RNN) models. The distinctive feature of our approach is that our multilingual word representation requires only a parallel corpus between source and target languages. More precisely, our approach has the following characteristics: (a) it does not use word alignment information, (b) it does not assume any knowledge about target languages (one requirement is that the two languages (source and target) are not too syntactically divergent), which makes it applicable to a wide range of low-resource languages, (c) it provides authentic multilingual taggers (one tagger forNlanguages). We investigate both uni and bidirectional RNN models and propose a method to include external information (for instance, low-level information from part-of-speech tags) in the RNN to train higher level taggers (for instance, Super Sense taggers). We demonstrate the validity and genericity of our model by using parallel corpora (obtained by manual or automatic translation). Our experiments are conducted to induce cross-lingual part-of-speech and Super Sense taggers. We also use our approach in a weakly supervised context, and it shows an excellent potential for very low-resource settings (less than 1k training utterances).


2015 ◽  
Vol 23 (1) ◽  
pp. 31-51 ◽  
Author(s):  
H. HAKAMI ◽  
D. BOLLEGALA

AbstractFinding translations for technical terms is an important problem in machine translation. In particular, in highly specialized domains such as biology or medicine, it is difficult to find bilingual experts to annotate sufficient cross-lingual texts in order to train machine translation systems. Moreover, new terms are constantly being generated in the biomedical community, which makes it difficult to keep the translation dictionaries up to date for all language pairs of interest. Given a biomedical term in one language (source language), we propose a method for detecting its translations in a different language (target language). Specifically, we train a binary classifier to determine whether two biomedical terms written in two languages are translations. Training such a classifier is often complicated due to the lack of common features between the source and target languages. We propose several feature space concatenation methods to successfully overcome this problem. Moreover, we study the effectiveness of contextual and character n-gram features for detecting term translations. Experiments conducted using a standard dataset for biomedical term translation show that the proposed method outperforms several competitive baseline methods in terms of mean average precision and top-k translation accuracy.


2021 ◽  
Author(s):  
Geoffrey F. Schau ◽  
Hassan Ghani ◽  
Erik A. Burlingame ◽  
Guillaume Thibault ◽  
Joe W. Gray ◽  
...  

AbstractAccurate diagnosis of metastatic cancer is essential for prescribing optimal control strategies to halt further spread of metastasizing disease. While pathological inspection aided by immunohistochemistry staining provides a valuable gold standard for clinical diagnostics, deep learning methods have emerged as powerful tools for identifying clinically relevant features of whole slide histology relevant to a tumor’s metastatic origin. Although deep learning models require significant training data to learn effectively, transfer learning paradigms provide mechanisms to circumvent limited training data by first training a model on related data prior to fine-tuning on smaller data sets of interest. In this work we propose a transfer learning approach that trains a convolutional neural network to infer the metastatic origin of tumor tissue from whole slide images of hematoxylin and eosin (H&E) stained tissue sections and illustrate the advantages of pre-training network on whole slide images of primary tumor morphology. We further characterize statistical dissimilarity between primary and metastatic tumors of various indications on patch-level images to highlight limitations of our indication-specific transfer learning approach. Using a primary-to-metastatic transfer learning approach, we achieved mean class-specific areas under receiver operator characteristics curve (AUROC) of 0.779, which outperformed comparable models trained on only images of primary tumor (mean AUROC of 0.691) or trained on only images of metastatic tumor (mean AUROC of 0.675), supporting the use of large scale primary tumor imaging data in developing computer vision models to characterize metastatic origin of tumor lesions.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3172
Author(s):  
Qingran Zhan ◽  
Xiang Xie ◽  
Chenguang Hu ◽  
Juan Zuluaga-Gomez ◽  
Jing Wang ◽  
...  

Phonological-based features (articulatory features, AFs) describe the movements of the vocal organ which are shared across languages. This paper investigates a domain-adversarial neural network (DANN) to extract reliable AFs, and different multi-stream techniques are used for cross-lingual speech recognition. First, a novel universal phonological attributes definition is proposed for Mandarin, English, German and French. Then a DANN-based AFs detector is trained using source languages (English, German and French). When doing the cross-lingual speech recognition, the AFs detectors are used to transfer the phonological knowledge from source languages (English, German and French) to the target language (Mandarin). Two multi-stream approaches are introduced to fuse the acoustic features and cross-lingual AFs. In addition, the monolingual AFs system (i.e., the AFs are directly extracted from the target language) is also investigated. Experiments show that the performance of the AFs detector can be improved by using convolutional neural networks (CNN) with a domain-adversarial learning method. The multi-head attention (MHA) based multi-stream can reach the best performance compared to the baseline, cross-lingual adaptation approach, and other approaches. More specifically, the MHA-mode with cross-lingual AFs yields significant improvements over monolingual AFs with the restriction of training data size and, which can be easily extended to other low-resource languages.


Sign in / Sign up

Export Citation Format

Share Document