scholarly journals Multidimensional CNN-LSTM Network for Automatic Modulation Classification

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1649
Author(s):  
Na Wang ◽  
Yunxia Liu ◽  
Liang Ma ◽  
Yang Yang ◽  
Hongjun Wang

Automatic modulation classification (AMC) is the premise for signal detection and demodulation applications, especially in non-cooperative communication scenarios. It has been a popular topic for decades and has gained significant progress with the development of deep learning methods. To further improve classification accuracy, a hierarchical multifeature fusion (HMF) based on a multidimensional convolutional neural network (CNN)-long short-term memory (LSTM) network is proposed in this paper. First, a multidimensional CNN module (MD-CNN) is proposed for feature compensation between interactive features extracted by two-dimensional convolutional filters and respective features extracted by one-dimensional filters. Second, learnt features of the MD-CNN module are fed into an LSTM layer for further exploitation of temporal features. Finally, classification results are obtained by the Softmax classifier. The effectiveness of the proposed method is verified by abundant experimental results on two public datasets, RadioML.2016.10a and RadioML.2016.10b. Satisfying results are obtained as compared with state-of-the-art methods.

2019 ◽  
Vol 9 (18) ◽  
pp. 3795 ◽  
Author(s):  
Haihong E ◽  
Siqi Xiao ◽  
Meina Song

Entity-relation extraction is a basic task in natural language processing, and recently, the use of deep-learning methods, especially the Long Short-Term Memory (LSTM) network, has achieved remarkable performance. However, most of the existing entity-relation extraction methods cannot solve the overlapped multi-relation extraction problem, which means one or two entities are shared among multiple relational triples contained in a sentence. In this paper, we propose a text-generated method to solve the overlapped problem of entity-relation extraction. Based on this, (1) the entities and their corresponding relations are jointly generated as target texts without any additional feature engineering; (2) the model directly generates the relational triples using a unified decoding process, and entities can be repeatedly presented in multiple triples to solve the overlapped-relation problem. We conduct experiments on two public datasets—NYT10 and NYT11. The experimental results show that our proposed method outperforms the existing work, and achieves the best results.


2021 ◽  
Vol 11 (10) ◽  
pp. 4689
Author(s):  
Ngoc-Hoang Nguyen ◽  
Tran-Dac-Thinh Phan ◽  
Soo-Hyung Kim ◽  
Hyung-Jeong Yang ◽  
Guee-Sang Lee

This paper presents a novel approach to continuous dynamic hand gesture recognition. Our approach contains two main modules: gesture spotting and gesture classification. Firstly, the gesture spotting module pre-segments the video sequence with continuous gestures into isolated gestures. Secondly, the gesture classification module identifies the segmented gestures. In the gesture spotting module, the motion of the hand palm and fingers are fed into the Bidirectional Long Short-Term Memory (Bi-LSTM) network for gesture spotting. In the gesture classification module, three residual 3D Convolution Neural Networks based on ResNet architectures (3D_ResNet) and one Long Short-Term Memory (LSTM) network are combined to efficiently utilize the multiple data channels such as RGB, Optical Flow, Depth, and 3D positions of key joints. The promising performance of our approach is obtained through experiments conducted on three public datasets—Chalearn LAP ConGD dataset, 20BN-Jester, and NVIDIA Dynamic Hand gesture Dataset. Our approach outperforms the state-of-the-art methods on the Chalearn LAP ConGD dataset.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1181
Author(s):  
Chenhao Zhu ◽  
Sheng Cai ◽  
Yifan Yang ◽  
Wei Xu ◽  
Honghai Shen ◽  
...  

In applications such as carrier attitude control and mobile device navigation, a micro-electro-mechanical-system (MEMS) gyroscope will inevitably be affected by random vibration, which significantly affects the performance of the MEMS gyroscope. In order to solve the degradation of MEMS gyroscope performance in random vibration environments, in this paper, a combined method of a long short-term memory (LSTM) network and Kalman filter (KF) is proposed for error compensation, where Kalman filter parameters are iteratively optimized using the Kalman smoother and expectation-maximization (EM) algorithm. In order to verify the effectiveness of the proposed method, we performed a linear random vibration test to acquire MEMS gyroscope data. Subsequently, an analysis of the effects of input data step size and network topology on gyroscope error compensation performance is presented. Furthermore, the autoregressive moving average-Kalman filter (ARMA-KF) model, which is commonly used in gyroscope error compensation, was also combined with the LSTM network as a comparison method. The results show that, for the x-axis data, the proposed combined method reduces the standard deviation (STD) by 51.58% and 31.92% compared to the bidirectional LSTM (BiLSTM) network, and EM-KF method, respectively. For the z-axis data, the proposed combined method reduces the standard deviation by 29.19% and 12.75% compared to the BiLSTM network and EM-KF method, respectively. Furthermore, for x-axis data and z-axis data, the proposed combined method reduces the standard deviation by 46.54% and 22.30% compared to the BiLSTM-ARMA-KF method, respectively, and the output is smoother, proving the effectiveness of the proposed method.


Author(s):  
Zhang Chao ◽  
Wang Wei-zhi ◽  
Zhang Chen ◽  
Fan Bin ◽  
Wang Jian-guo ◽  
...  

Accurate and reliable fault diagnosis is one of the key and difficult issues in mechanical condition monitoring. In recent years, Convolutional Neural Network (CNN) has been widely used in mechanical condition monitoring, which is also a great breakthrough in the field of bearing fault diagnosis. However, CNN can only extract local features of signals. The model accuracy and generalization of the original vibration signals are very low in the process of vibration signal processing only by CNN. Based on the above problems, this paper improves the traditional convolution layer of CNN, and builds the learning module (local feature learning block, LFLB) of the local characteristics. At the same time, the Long Short-Term Memory (LSTM) is introduced into the network, which is used to extract the global features. This paper proposes the new neural network—improved CNN-LSTM network. The extracted deep feature is used for fault classification. The improved CNN-LSTM network is applied to the processing of the vibration signal of the faulty bearing collected by the bearing failure laboratory of Inner Mongolia University of science and technology. The results show that the accuracy of the improved CNN-LSTM network on the same batch test set is 98.75%, which is about 24% higher than that of the traditional CNN. The proposed network is applied to the bearing data collection of Western Reserve University under the condition that the network parameters remain unchanged. The experiment shows that the improved CNN-LSTM network has better generalization than the traditional CNN.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5762
Author(s):  
Syed Basit Ali Bukhari ◽  
Khawaja Khalid Mehmood ◽  
Abdul Wadood ◽  
Herie Park

This paper presents a new intelligent islanding detection scheme (IIDS) based on empirical wavelet transform (EWT) and long short-term memory (LSTM) network to identify islanding events in microgrids. The concept of EWT is extended to extract features from three-phase signals. First, the three-phase voltage signals sampled at the terminal of targeted distributed energy resource (DER) or point of common coupling (PCC) are decomposed into empirical modes/frequency subbands using EWT. Then, instantaneous amplitudes and instantaneous frequencies of the three-phases at different frequency subbands are combined, and various statistical features are calculated. Finally, the EWT-based features along with the three-phase voltage signals are input to the LSTM network to differentiate between non-islanding and islanding events. To assess the efficacy of the proposed IIDS, extensive simulations are performed on an IEC microgrid and an IEEE 34-node system. The simulation results verify the effectiveness of the proposed IIDS in terms of non-detection zone (NDZ), computational time, detection accuracy, and robustness against noisy measurement. Furthermore, comparisons with existing intelligent methods and different LSTM architectures demonstrate that the proposed IIDS offers higher reliability by significantly reducing the NDZ and stands robust against measurements uncertainty.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1804
Author(s):  
Wentai Lei ◽  
Jiabin Luo ◽  
Feifei Hou ◽  
Long Xu ◽  
Ruiqing Wang ◽  
...  

Ground penetrating radar (GPR), as a non-invasive instrument, has been widely used in the civil field. The interpretation of GPR data plays a vital role in underground infrastructures to transfer raw data to the interested information, such as diameter. However, the diameter identification of objects in GPR B-scans is a tedious and labor-intensive task, which limits the further application in the field environment. The paper proposes a deep learning-based scheme to solve the issue. First, an adaptive target region detection (ATRD) algorithm is proposed to extract the regions from B-scans that contain hyperbolic signatures. Then, a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) framework is developed that integrates Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network to extract hyperbola region features. It transfers the task of diameter identification into a task of hyperbola region classification. Experimental results conducted on both simulated and field datasets demonstrate that the proposed scheme has a promising performance for diameter identification. The CNN-LSTM framework achieves an accuracy of 99.5% on simulated datasets and 92.5% on field datasets.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Binsheng He ◽  
Xichuan Liu ◽  
Shuai Hu ◽  
Kun Song ◽  
Taichang Gao

As a method that does not require additional cost, precipitation measurement by microwave links (MLs) has quickly attracted the attention of experts in meteorological, hydrological, and other related fields, of which wet-dry classification by MLs is one of the most important methods. Considering that existing commercial MLs are usually single-path, single-polarization, or low-frequency MLs, this paper uses the C-band ML and analyzes the variation in the receive signal level (RSL) of the C-band ML under the conditions of no rain, drizzle, light rain, and moderate rain. The RSL data are analyzed at different time scales by using long short-term memory (LSTM) network techniques, and then the method for distinguishing parts of the precipitation period by using the RSL from low-frequency MLs is proposed and validated. The results show that wet-dry classification is ideal. The accuracy on each day was higher than 60%, and some days had accuracies that were even higher than 98%. MLs below 10 GHz also had the potential to monitor ground rainfall. This study will broaden the range of available equipment for MLs for precipitation measurement.


Sign in / Sign up

Export Citation Format

Share Document