scholarly journals Quadrature Demodulator-Assisted Estimation of Load Voltage and Resistance Based on Primary-Side Information of a Wireless Power Transfer Link

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1858
Author(s):  
Or Trachtenberg ◽  
Alon Kuperman

This paper proposes an algorithm for the extraction of primary-side first harmonic voltage and current components for inductive wireless power transfer (WPT) links by employing quadrature demodulation. Such information allows for the accurate estimation of corresponding receiver-side components and hence permits the monitoring of the output voltage and resistance necessary for protection and/or control without using either sensors or feedback communication. It is shown that precision estimation is held as long as the parameter values of the system are known and the phasor-domain equivalent circuit is valid (i.e., in continuous conduction mode). On the other hand, upon light load operation (i.e., in discontinuous conduction mode), the proposed technique may still be employed if suitable nonlinear correction is employed. The methodology is applied to a 400 V, 1 kW inductive WPT link operating at a load-independent-voltage-output frequency and is well-verified both by simulations and experiments.

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2109
Author(s):  
Or Trachtenberg ◽  
Alon Kuperman

The paper puts forward a method for predicting output voltage and resistance of a series-series (SS) compensated inductive wireless power transfer (IWPT) link operating at load-independent-voltage-output (LIVO) frequency. The link is a part of the static system (reported by the authors in earlier works), wirelessly delivering power into an enclosed compartment without any secondary-to-primary feedback. The proposed algorithm employs input DC-side quantities (which are slow-varying and nearly noise-free, thus measured utilizing low-cost, low-bandwidth sensors) only to monitor output DC-side quantities, required for protection and/or control. It is shown that high estimation accuracy is retained as long as system parameter values are known and the phasor-domain equivalent circuit is valid (i.e., upon continuous-conduction mode (CCM) of the diode rectifier, where the proposed methodology utilizes the recently revealed modified diode rectifier equivalent model for enhanced accuracy). Under light loading (i.e., in discontinuous conduction mode (DCM)), a nonlinear correction is combined with the proposed technique to retain accuracy. The proposed methodology is well-verified by application to a 400 V to 400 V, 1 kW static IWPT link by simulations and experiments.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 164835-164843
Author(s):  
Wenxun Xiao ◽  
Ruigeng Shen ◽  
Bo Zhang ◽  
Dongyuan Qiu ◽  
Yanfeng Chen ◽  
...  

Author(s):  
Quandi Wang ◽  
Yingcong Wang ◽  
Jianwei Kang ◽  
Wanlu Li

Purpose The purpose of this paper is to present a monitoring method for a three-coil wireless power transfer (WPT) system, which consists of a transmitting coil (Tx), a relay coil and a movable receiving coil (Rx). Both an ideal resistance and a rectifier bridge load are taken into account. Design/methodology/approach From the perspective of fundamental component, the equivalent impedance of a rectifier bridge load is well analyzed. On the basis of the circuit model of a three-coil WPT, estimation equations of the variable mutual inductances and load condition are deduced. Multi-frequency input impedance obtained by frequency scans combined with the Newton-Raphson method are used to obtain solutions. Findings Experimental results indicate that the estimated parameter values are close to each other when different sets of source frequencies are applied. When compared with simulation results, these estimated parameters including both mutual inductances and load resistances are found to be accurate. Originality/value Using only the information of input side, the proposed algorithm can estimate the mutual inductances and load resistance regardless of the Rx positions. Estimation is feasible for the system with a rectifier bridge load. The estimated analysis will serve as a key step in load power stabilization for WPT systems.


Author(s):  
C.-P. Chang ◽  
W.-W. Yen ◽  
Paul C.-P. Chao

Abstract A new wireless power transfer circuit with a single-stage regulating rectifier is designed and validated with satisfactory efficiency for flexible sensor patches. Since the battery is bulky and cannot be fabricated on a flexible substrate, the power source of the electronic patch is realized by wireless power transfer. Magnetic resonance transmission power at 13.56 MHz in the ISM band is adopted to make possible wireless power transfer. Furthermore, for high conversion efficiency, a new single-stage regulating rectifier is designed and implemented at the receiver side of the sensor patch. An active switching full-wave bridge rectifier is designed to reduce conduction loss and increase the voltage-conversion rate. A delay lock loop feedback controller overcomes the switching delays at high frequencies that significantly undermine power conversion efficiency. The voltage rectification and regulation are achieved simultaneously in a single-stage rectifier through 1X/0X mode control. The PFM control is adopted to select the switching frequency of the system in order to maximize the transient response during heavy load and to minimize the switching power losses during light load. The circuit is fabricated via the TSMC 0.35 μm process. The output efficiency of the circuitry was improved by 5–10% in light load as compared with the circuit without PFM control, while the peak efficiency reaches favorable 86%.


Sign in / Sign up

Export Citation Format

Share Document