scholarly journals Output Voltage and Resistance Assessment of Load-Independent-Voltage-Output Frequency Operating Inductive Wireless Power Transfer Link Utilizing Input DC-Side Measurements Only

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2109
Author(s):  
Or Trachtenberg ◽  
Alon Kuperman

The paper puts forward a method for predicting output voltage and resistance of a series-series (SS) compensated inductive wireless power transfer (IWPT) link operating at load-independent-voltage-output (LIVO) frequency. The link is a part of the static system (reported by the authors in earlier works), wirelessly delivering power into an enclosed compartment without any secondary-to-primary feedback. The proposed algorithm employs input DC-side quantities (which are slow-varying and nearly noise-free, thus measured utilizing low-cost, low-bandwidth sensors) only to monitor output DC-side quantities, required for protection and/or control. It is shown that high estimation accuracy is retained as long as system parameter values are known and the phasor-domain equivalent circuit is valid (i.e., upon continuous-conduction mode (CCM) of the diode rectifier, where the proposed methodology utilizes the recently revealed modified diode rectifier equivalent model for enhanced accuracy). Under light loading (i.e., in discontinuous conduction mode (DCM)), a nonlinear correction is combined with the proposed technique to retain accuracy. The proposed methodology is well-verified by application to a 400 V to 400 V, 1 kW static IWPT link by simulations and experiments.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2052
Author(s):  
Milena Kurzawa ◽  
Cezary Jędryczka ◽  
Rafał M. Wojciechowski

In this paper, the feasibility of applying a multi-branch equivalent model employing first- and second-order Cauer circuits for the analysis of electromagnetic transducers used in systems of wireless power transfer is discussed. A method of formulating an equivalent model (EqM) is presented, and an example is shown for a wireless power transfer system (WPTS) consisting of an air transformer with field concentrators. A method is proposed to synthesize the EqM of the considered transducer based on the time-harmonic field model, an optimization algorithm employing the evolution strategy (ES) and the equivalent Cauer circuits. A comparative analysis of the performance of the considered WPTS under high-frequency voltage supply calculated using the proposed EqM and a 3D field model in the time domain using the finite element method (FEM) was carried out. The selected results of the conducted analysis are presented and discussed.


2021 ◽  
Author(s):  
Abinaya.B ◽  
Abirami.A.P ◽  
Divya.J ◽  
Rajalakshmi.R

The vast majority of the modernized implantable devices and Bio-sensors are set inside a patient’s body. To overcome this constraint, in this paper we have designed a rechargeable battery with wireless power transfer technique. The transdermal power transfer for the Pacemaker which is placed inside the heart should be possible by the concept of mutual inductance. The receiver loop ought to be situated inside the body and the transmitter curl ought to be situated outside of the body. The voltage controller will give or manage the necessary yield (output) voltage. The experiments were conducted on wireless charging through pork tissues reveal that from a 3.919-mw power source, 3.072-mw power can be received at 300kHz, reaching a high wireless power transfer efficiency of 78.4%, showing that the charging is very fast. We have also connected a Bluetooth Module to the Atmega328 microcontroller. This Bluetooth technology is used in the Android mobile application to notice the charging levels of the pacemaker. This Inductive power transfer technique takes out the danger of contamination which is brought about by the medical procedure.


2019 ◽  
Vol 11 ◽  
pp. 175682931987005
Author(s):  
Jose Polo ◽  
Lluís Hontecillas ◽  
Ignacio Izquierdo ◽  
Oscar Casas

The aim of this work is to demonstrate the feasibility use of an Micro air vehicles (MAV) in order to power wirelessly an electric system, for example, a sensor network, using low-cost and open-source elements. To achieve this objective, an inductive system has been modelled and validated to power wirelessly a sensor node using a Crazyflie 2.0 as MAV. The design of the inductive system must be small and light enough to fulfil the requirements of the Crazyflie. An inductive model based on two resonant coils is presented. Several coils are defined to be tested using the most suitable resonant configuration. Measurements are performed to validate the model and to select the most suitable coil. While attempting to minimize the weight at transmitter’s side, on the receiver side it is intended to efficiently acquire and manage the power obtained from the transmitter. In order to prove its feasibility, a temperature sensor node is used as demonstrator. The experiment results show successfully energy transportation by MAV, and wireless power transfer for the resonant configuration, being able to completely charge the node battery and to power the temperature sensor.


Sign in / Sign up

Export Citation Format

Share Document