scholarly journals Anomaly Detection of Operating Equipment in Livestock Farms Using Deep Learning Techniques

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1958
Author(s):  
Hyeon Park ◽  
Daeheon Park ◽  
Sehan Kim

In order to establish a smart farm, many kinds of equipment are built and operated inside and outside of a pig house. Thus, the environment for livestock (limited to pigs in this paper) in the barn is properly maintained for its growth conditions. However, due to poor environments such as closed pig houses, lack of stable power supply, inexperienced livestock management, and power outages, the failure of these environment equipment is high. Thus, there are difficulties in detecting its malfunctions during equipment operation. In this paper, based on deep learning, we provide a mechanism to quickly detect anomalies of multiple equipment (environmental sensors and controllers, etc.) in each pig house at the same time. In particular, environmental factors (temperature, humidity, CO2, ventilation, radiator temperature, external temperature, etc.) to be used for learning were extracted through the analysis of data accumulated for the generation of predictive models of each equipment. In addition, the optimal recurrent neural network (RNN) environment was derived by analyzing the characteristics of the learning RNN. In this way, the accuracy of the prediction model can be improved. In this paper, the real-time input data (only in the case of temperature) was intentionally induced above the threshold, and 93% of the abnormalities were detected to determine whether the equipment was abnormal.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Luis Fregoso-Aparicio ◽  
Julieta Noguez ◽  
Luis Montesinos ◽  
José A. García-García

AbstractDiabetes Mellitus is a severe, chronic disease that occurs when blood glucose levels rise above certain limits. Over the last years, machine and deep learning techniques have been used to predict diabetes and its complications. However, researchers and developers still face two main challenges when building type 2 diabetes predictive models. First, there is considerable heterogeneity in previous studies regarding techniques used, making it challenging to identify the optimal one. Second, there is a lack of transparency about the features used in the models, which reduces their interpretability. This systematic review aimed at providing answers to the above challenges. The review followed the PRISMA methodology primarily, enriched with the one proposed by Keele and Durham Universities. Ninety studies were included, and the type of model, complementary techniques, dataset, and performance parameters reported were extracted. Eighteen different types of models were compared, with tree-based algorithms showing top performances. Deep Neural Networks proved suboptimal, despite their ability to deal with big and dirty data. Balancing data and feature selection techniques proved helpful to increase the model’s efficiency. Models trained on tidy datasets achieved almost perfect models.


2021 ◽  
Vol 22 (6) ◽  
pp. 2903
Author(s):  
Noam Auslander ◽  
Ayal B. Gussow ◽  
Eugene V. Koonin

The exponential growth of biomedical data in recent years has urged the application of numerous machine learning techniques to address emerging problems in biology and clinical research. By enabling the automatic feature extraction, selection, and generation of predictive models, these methods can be used to efficiently study complex biological systems. Machine learning techniques are frequently integrated with bioinformatic methods, as well as curated databases and biological networks, to enhance training and validation, identify the best interpretable features, and enable feature and model investigation. Here, we review recently developed methods that incorporate machine learning within the same framework with techniques from molecular evolution, protein structure analysis, systems biology, and disease genomics. We outline the challenges posed for machine learning, and, in particular, deep learning in biomedicine, and suggest unique opportunities for machine learning techniques integrated with established bioinformatics approaches to overcome some of these challenges.


Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


Author(s):  
Ivan Himawan ◽  
Michael Towsey ◽  
Bradley Law ◽  
Paul Roe

Sign in / Sign up

Export Citation Format

Share Document