scholarly journals Analysis of Singular Configuration of Robotic Manipulators

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2189
Author(s):  
Xinglei Zhang ◽  
Binghui Fan ◽  
Chuanjiang Wang ◽  
Xiaolin Cheng

Robotic manipulators inevitably encounter singular configurations in the process of movement, which seriously affects their performance. Therefore, the identification of singular configurations is extremely important. However, serial manipulators that do not meet the Pieper criterion cannot obtain singular configurations through analytical methods. A joint angle parameterization method, used to obtain singular configurations, is here creatively proposed. First, an analytical method based on the Jacobian determinant and the proposed method were utilized to obtain their respective singular configurations of the Stanford manipulator. The singular configurations obtained through the two methods were consistent, which suggests that the proposed method can obtain singular configurations correctly. Then, the proposed method was applied to a seven-degree-of-freedom (7-DOF) serial manipulator and a planar 5R parallel manipulator. Finally, the correctness of the singular configurations of the 7-DOF serial manipulator was verified through the shape of the end-effector velocity ellipsoid, the value of the determinant, the value of the condition number, and the value of the manipulability measure. The correctness of singular configurations of the planar 5R parallel manipulator was verified through the value of the determinant, the value of the condition number, and the value of the manipulability measure.

Author(s):  
Yu-Tong Li ◽  
Yu-Xin Wang

Kinematic parameters have significant influences on the motion stability of parallel manipulators at singular configureations. Taking the plane 3-RPR parallel manipulator as an example, the motion stability at different types of singular configurations corresponding to the angular speed and velocity of the movable platform are investigated. At first, the second order of uncoupled dynamics equation for the 3-RPR parallel manipulator is established with the aid of the second class Lagrange approach. According to the Lyapunov first approximate stability criterion, the approximate conditions for the 3-RPR parallel manipulator with a stabile motion at singular configurations are determined based on the Gerschgorin circle theorem. Next, the exact Hurwitz criterion is utilized to study the motion stability and the load capability of the manipulator corresponding to the angular speed and velocity of the movable platform, as well as the directions of the external forces at two kinds of singular configurations: with a gained rotation-type DOF, and with a gained translation-type DOF, respectively. The results show that increasing both the angular speed and the velocity of the mass center of the movable platform can efficiently improve the motion stability of the 3-RPR parallel manipulator at singular configurations.


1991 ◽  
Vol 113 (3) ◽  
pp. 272-279 ◽  
Author(s):  
H. Lipkin ◽  
E. Pohl

Kinematic singularities are important considerations in the design and control of robotic manipulators. For six degree-of-freedom manipulators, the vanishing of the determinant of the Jacobian yields the conditions for the primary singularities. Examining the vanishing of the minors of the Jacobian yields further singularities which are special cases of the primary ones. A systematic procedure is presented to efficiently enumerate all possible singular configurations. Special geometries of representative manipulators are exploited by expressing the Jacobian in terms of vector elements. In contrast to using a joint-angle space approach, the resulting expressions yield direct physical interpretations.


Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 353-358 ◽  
Author(s):  
Raffaele Di Gregorio

In the literature, 3-RRPRR architectures were proposed to obtain pure translation manipulators. Moreover, the geometric conditions, which 3-RRPRR architectures must match, in order to make the end-effector (platform) perform infinitesimal (elementary) spherical motion were enunciated. The ability to perform elementary spherical motion is a necessary but not sufficient condition to conclude that the platform is bound to accomplish finite spherical motion, i.e. that the mechanism is a spherical parallel manipulator (parallel wrist). This paper demonstrates that the 3-RRPRR architectures matching the geometric conditions for elementary spherical motion make the platform accomplish finite spherical motion, i.e. they are parallel wrists (3-RRPRR wrist), provided that some singular configurations, named translation singularities, are not reached. Moreover, it shows that 3-RRPRR wrists belong to a family of parallel wrists which share the same analytic expression of the constraints which the legs impose on the platform. Finally, the condition that identifies all the translation singularities of the mechanisms of this family is found and geometrically interpreted. The result of this analysis is that the translation singularity locus can be represented by a surface (singularity surface) in the configuration space of the mechanism. Singularity surfaces drawn by exploiting the given condition are useful tools in designing these wrists.


Robotica ◽  
2008 ◽  
Vol 26 (3) ◽  
pp. 405-413 ◽  
Author(s):  
Iman Ebrahimi ◽  
Juan A. Carretero ◽  
Roger Boudreau

SUMMARYIn this work, the 3-RPRR, a new kinematically redundant planar parallel manipulator with six-degrees-of-freedom, is presented. First, the manipulator is introduced and its inverse displacement problem discussed. Then, all types of singularities of the 3-RPRR manipulator are analysed and demonstrated. Thereafter, the dexterous workspace is geometrically obtained and compared with the non-redundant 3-PRR planar parallel manipulator. Finally, based on a geometrical measure of proximity to singular configurations and the condition number of the manipulators' Jacobian matrices, actuation schemes for the manipulators are obtained. Different actuation schemes for a given path are obtained and the quality of their actuation schemes are compared. It is shown that the proposed manipulator is capable of following a path while avoiding the singularities.


2010 ◽  
Vol 143-144 ◽  
pp. 308-312 ◽  
Author(s):  
Yi Cao ◽  
Hui Zhou ◽  
Bao Kun Li ◽  
Shen Long ◽  
Meng Si Liu

This paper mainly addresses the principle of the singularity elimination of the Stewart parallel platform. By adding appropriate redundant actuation, the rank of the Jacobian matrix of the parallel platform is always full, accordingly the singular value of the Jacobian matrix of the parallel platform is nonzero. Then the singular configuration of the parallel platform can be eliminated by adding one redundant actuation. Numerical examples are taken to illuminate the principle’s effectiveness. It is shown that not only singular configurations of the Stewart parallel platform can be eliminated, but also performances of kinematics and dynamics of the parallel platform can be greatly perfected by adding appropriate redundant actuation.


2003 ◽  
Vol 125 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Yuefa Fang ◽  
Lung-Wen Tsai

When a serial manipulator is at a singular configuration, the Jacobian matrix will lose its full rank causing the manipulator to lose one or more degrees of freedom. This paper presents a novel approach to model the manipulator kinematics and solve for feasible motions of a manipulator at singular configurations such that the precise path tracking of a manipulator at such configurations is possible. The joint screw linear dependency is determined by using known line varieties so that not only the singular configurations of a manipulator can be identified but also the dependent joint screws can be determined. Feasible motions in Cartesian space are identified by using the theory of reciprocal screws and the resulting equations of constraint. The manipulator first-order kinematics is then modeled by isolating the linearly dependent columns and rows of the Jacobian matrix such that the mapping between the feasible motions in Cartesian space and the joint space motions can be uniquely determined. Finally, a numerical example is used to demonstrate the feasibility of the approach. The simulation results show that a PUMA-type robot can successfully track a path that is singular at all times.


Robotica ◽  
2000 ◽  
Vol 18 (4) ◽  
pp. 381-387 ◽  
Author(s):  
Pasquale Chiacchio

Manipulability ellipsoids are effective tools to perform task space analysis of robotic manipulators in terms of velocities, accelerations and forces at the end effector. In this paper a new definition of a dynamic manipulability ellipsoid for redundant manipulators is proposed which leads to more correct results in evaluating manipulator capabilities in terms of task-space accelerations. The case of manipulators in singular configurations is also analyzed. Two case studies are presented to illustrate the correctness of the proposed approach.


1992 ◽  
Vol 114 (3) ◽  
pp. 349-358 ◽  
Author(s):  
V. Kumar

This paper addresses the instantaneous kinematics of robotic manipulators which have an in-parallel scheme of actuation. Hybrid geometries which require both serial and parallel actuation are also considered. Multifingered grippers, walking vehicles, and multiarm manipulation systems in addition to robot arms with a parallel structure can be included in this broad category. The direct and inverse kinematics (and statics) of these devices is discussed with particular attention to applications in control. An analytical method based on screw system theory for obtaining transformation equations between joint and end-effector coordinates is described. Special configurations in which the end-effector gains or loses a degree of freedom, which are also known as geometric singularities, are an important consideration in this study. This is because the number of special configurations or singularities in the workspace is far more for in-parallel manipulators than that for serial manipulators. The special configurations for a planar dual-arm manipulation system, which can be kinematically modeled as a 5-R linkage, are discussed in some detail as an example.


Robotica ◽  
2014 ◽  
Vol 32 (8) ◽  
pp. 1191-1211 ◽  
Author(s):  
Ho Shing Lo ◽  
Shengquan Xie

SUMMARYThis paper presents a redundant 4-revolute (4R) spherical wrist mechanism for a shoulder exoskeleton, which overcomes several major issues with the 3R mechanisms used in the past. An analysis of the 3R mechanism is done to highlight the limitations in its range of motion and problems caused by operating near singular configurations. To ensure that the redundancy in the 4R mechanism is efficiently utilized, genetic algorithm is used to optimize the mechanism design and identify the optimal operating configurations of the mechanism. The capability to reach the entire shoulder workspace is guaranteed and the joint velocities are minimized by considering the joint displacements required to move the end-effector throughout the workspace and the condition number of joint configurations for reaching 89 positions in the workspace. Analysis of the 4R mechanism obtained from the optimization process indicates that it can move throughout the entire shoulder workspace with feasibly low joint velocities.


2021 ◽  
Author(s):  
◽  
Ben Haughey

<p>Development in pick-and-place robotic manipulators continues to grow as factory processes are streamlined. One configuration of these manipulators is the two degree of freedom, planar, parallel manipulator (2DOFPPM). A machine building company, RML Engineering Ltd., wishes to develop custom robotic manipulators that are optimised for individual pick-and-place applications. This thesis develops several tools to assist in the design process. The 2DOFPPM’s structure lends itself to fast and accurate translations in a single plane. However, the performance of the 2DOFPPM is highly dependent on its dimensions. The kinematics of the 2DOFPPM are explored and used to examine the reachable workspace of the manipulator. This method of analysis also gives insight into the relative speed and accuracy of the manipulator’s end-effector in the workspace. A simulation model of the 2DOFPPM has been developed in Matlab’s® SimMechanics®. This allows the detailed analysis of the manipulator’s dynamics. In order to provide meaningful input into the simulation model, a cubic spline trajectory planner is created. The algorithm uses an iterative approach of minimising the time between knots along the path, while ensuring the kinematic and dynamic limits of the motors and end-effector are abided by. The resulting trajectory can be considered near-minimum in terms of its cycle-time. The dimensions of the 2DOFPPM have a large effect on the performance of the manipulator. Four major dimensions are analysed to see the effect each has on the cycle-time over a standardised path. The dimensions are the proximal and distal arms, spacing of the motors and the height of the manipulator above the workspace. The solution space of all feasible combinations of these dimensions is produced revealing cycle-times with a large degree of variation over the same path. Several optimisation algorithms are applied to finding the manipulator configuration with the fastest cycle-time. A random restart hill-climber, stochastic hill-climber, simulated annealing and a genetic algorithm are developed. After each algorithm’s parameters are tuned, the genetic algorithm is shown to outperform the other techniques.</p>


Sign in / Sign up

Export Citation Format

Share Document