scholarly journals Robust Control Optimization Based on Actuator Fault and Sensor Fault Compensation for Mini Motion Package Electro-Hydraulic Actuator

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2774
Author(s):  
Tan Van Nguyen ◽  
Huy Q. Tran ◽  
Khoa Nguyen Dang

In recent years, electro-hydraulic systems have been widely used in many industries and have attracted research attention because of their outstanding characteristics such as power, accuracy, efficiency, and ease of maintenance. However, such systems face serious problems caused simultaneously by disturbances, internal leakage fault, sensor fault, and dynamic uncertain equation components, which make the system unstable and unsafe. Therefore, in this paper, we focus on the estimation of system fault and uncertainties with the aid of advanced fault compensation techniques. First, we design a sliding mode observer using the Lyapunov algorithm to estimate actuator faults that produce not only internal leakage fault but also disturbances or unknown input uncertainties. These faults occur under the effect of payload variations and unknown friction nonlinearities. Second, Lyapunov analysis-based unknown input observer model is designed to estimate sensor faults arising from sensor noises and faults. Third, to minimize the estimated faults, a combination of actuator and sensor compensation fault is proposed, in which the compensation process is performed due to the difference between the output signal and its estimation. Finally, the numerical simulations are performed to demonstrate the effectiveness of the proposed method obtained under various faulty scenarios. The simulation results show that the efficiency of the proposed solution is better than the traditional PID controller and the sensor fault compensation method, despite the influence of noises.

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4337 ◽  
Author(s):  
Tan Van Nguyen ◽  
Cheolkeun Ha

Electro-hydraulic actuators (EHAs) have been widely used in modern industries. However, sensor faults and actuator faults in EHA systems can arise due to aging during operation, making the system unstable and unsafe. To solve these issues, fault-tolerant control (FTC) techniques for EHA systems have been studied intensively. In this paper, an FTC is proposed and developed for the mini motion package (MMP) EHA system. First, a mathematical model of the MMP system is formulated and improved to provide position tracking control using a well-known proportional-integral-derivative (PID) controller. Second, an unknown input observer (UIO) reconstruction is performed to estimate the states, disturbances, and sensor faults so that an asymptotically stable control error can be obtained by a linear matrix inequality (LMI) optimization algorithm through Lyapunov’s stability condition. Third, the FTC designed for the nonlinear discrete-time system is formed from fault compensation based on a residual logic signal to implement the fault compensation process and ensure stability and tracking performance with respect to minimizing impacts of disturbances and sensor faults. Here, residual is defined by the difference between state response and state estimation. Finally, numerical simulations and experiments of the MMP system are presented to illustrate the efficiency of the proposed FTC technique.


2018 ◽  
Vol 21 (1) ◽  
pp. 339-353 ◽  
Author(s):  
Samuel Gómez‐Peñate ◽  
Guillermo Valencia‐Palomo ◽  
Francisco‐Ronay López‐Estrada ◽  
Carlos‐Manuel Astorga‐Zaragoza ◽  
Roque A. Osornio‐Rios ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 389 ◽  
Author(s):  
Song ◽  
Lee ◽  
Park ◽  
Baek

In the development of a wearable robot, compact volume size, high energy efficiency, and a high load capacity linear actuator system are necessary. However, conventional hydraulic actuator systems are difficult to apply to wearable robots. Also, they have nonlinearities because of the presence of hydraulic fluid in a single rod cylinder. Electric linear actuators resolve the problems of hydraulic systems. However, due to their low load capacity, they are not easy to apply to wearable robots. In this paper, a pump-controlled electro-hydraulic actuator (EHA) system that considers the disadvantages of the hydraulic actuator and electric actuator is proposed for a wearable robot. Initially, a locking circuit design is considered for the EHA to give the system load holding capacity. Based on the developed model, the adaptive sliding mode control (ASMC) scheme is designed to resolve the nonlinearity problem of changes in the dynamic system. The ASMC scheme is then modeled and verified with Simulink. In order to verify the performance of the proposed adaptive control with the model, experiments are conducted. The proposed EHA verifies that the ASMC reaches the target value well despite the existence of many model uncertainties.


Author(s):  
Mahyar Akbari ◽  
Abdol Majid Khoshnood ◽  
Saied Irani

In this article, a novel approach for model-based sensor fault detection and estimation of gas turbine is presented. The proposed method includes driving a state-space model of gas turbine, designing a novel L1-norm Lyapunov-based observer, and a decision logic which is based on bank of observers. The novel observer is designed using multiple Lyapunov functions based on L1-norm, reducing the estimation noise while increasing the accuracy. The L1-norm observer is similar to sliding mode observer in switching time. The proposed observer also acts as a low-pass filter, subsequently reducing estimation chattering. Since a bank of observers is required in model-based sensor fault detection, a bank of L1-norm observers is designed in this article. Corresponding to the use of the bank of observers, a two-step fault detection decision logic is developed. Furthermore, the proposed state-space model is a hybrid data-driven model which is divided into two models for steady-state and transient conditions, according to the nature of the gas turbine. The model is developed by applying a subspace algorithm to the real field data of SGT-600 (an industrial gas turbine). The proposed model was validated by applying to two other similar gas turbines with different ambient and operational conditions. The results of the proposed approach implementation demonstrate precise gas turbine sensor fault detection and estimation.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 30750-30760
Author(s):  
Van Du Phan ◽  
Cong Phat Vo ◽  
Hoang Vu Dao ◽  
Kyoung Kwan Ahn

Author(s):  
V. Kamatchi Kannan ◽  
R. Srimathi ◽  
V. Gomathi ◽  
R. Valarmathi ◽  
L.T. PrithiEkammai

2021 ◽  
Vol 11 (13) ◽  
pp. 5914
Author(s):  
Daniel Reyes-Uquillas ◽  
Tesheng Hsiao

In this article, we aim to achieve manual guidance of a robot manipulator to perform tasks that require strict path following and would benefit from collaboration with a human to guide the motion. The robot can be used as a tool to increase the accuracy of a human operator while remaining compliant with the human instructions. We propose a dual-loop control structure where the outer admittance control loop allows the robot to be compliant along a path considering the projection of the external force to the tangential-normal-binormal (TNB) frame associated with the path. The inner motion control loop is designed based on a modified sliding mode control (SMC) law. We evaluate the system behavior to forces applied from different directions to the end-effector of a 6-DOF industrial robot in a linear motion test. Next, a second test using a 3D path as a tracking task is conducted, where we specify three interaction types: free motion (FM), force-applied motion (FAM), and combined motion with virtual forces (CVF). Results show that the difference of root mean square error (RMSE) among the cases is less than 0.1 mm, which proves the feasibility of applying this method for various path-tracking applications in compliant human–robot collaboration.


Sign in / Sign up

Export Citation Format

Share Document