scholarly journals Analysis of Intrinsic Mechanistic of Stability-Tracking Control for Distributed Drive Autonomous Electric Vehicle

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3010
Author(s):  
Xuequan Tang ◽  
Yunbing Yan ◽  
Baohua Wang ◽  
Xiaowei Xu ◽  
Lin Zhang

For distributed drive autonomous vehicles, adding lateral stability control (LSC) to the trajectory tracking control (TTC) can optimize the distribution of the driving torque of each wheel, so that the vehicle can track the planned trajectory while maintaining stable lateral motion. However, the influence of adding LSC on the TTC system is still unclear. Firstly, a stability-track hierarchical control structure composed of LSC and TTC was established, and the interaction between the two layers was identified as the key of this paper. Then, the Intrinsic Mechanistic framework of the stability-tracking control (STC) was proposed by establishing and analyzing the vehicle dynamic model and control process of two layers. Finally, through simulation experiments, it was found that the change in the curvature of the target trajectory will make the tracking target trajectory and maintaining the lateral stability of the vehicle appear to conflict; in addition, in the LSC layer, the steering characteristics and delay characteristics of different reference models have a greater impact on the lateral stability and trajectory tracking performance; moreover, adjusting the preview time has a more obvious effect on trajectory tracking and lateral stability than the stability correction intensity coefficient.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Zhi Chen ◽  
Xiaowei Tu ◽  
Qinghua Yang ◽  
Daobo Wang ◽  
Jian Fu

In this paper, a complete nonlinear dynamic unmanned helicopter model considering wind disturbance is proposed to achieve realistic simulations and teasing out the effect of wind on the control system. The wind velocity vector which is horizontal as seen in the inertial frame can be obtained by subtracting the airspeed measured by atmospheric data computer from the inertial speed measured by GPS. The design of the controller fully considers the existence of wind, and the wind disturbance is suppressed by the method of hierarchical control combined with the integral sliding mode control (SMC). The stability proof is given. Hardware in the loop (HIL) tool is employed as a practical engineering solution, and it is an essential step in validating the new algorithm before moving to real flight experiments.


Author(s):  
Ruo Zhang ◽  
Yuanchang Liu ◽  
Enrico Anderlini

To achieve a fully autonomous navigation for unmanned surface vessels (USVs), a robust control capability is essential. The control of USVs in complex maritime environments is rather challenging as numerous system uncertainties and environmental influences affect the control performance. This paper therefore investigates the trajectory tracking control problem for USVs with motion constraints and environmental disturbances. Two different controllers are proposed to achieve the task. The first approach is mainly based on the backstepping technique augmented by a virtual system to compensate for the disturbance and an auxiliary system to bound the input in the saturation limit. The second control scheme is mainly based on the normalisation technique, with which the bound of the input can be limited in the constraints by tuning the control parameters. The stability of the two control schemes is demonstrated by the Lyapunov theory. Finally, simulations are conducted to verify the effectiveness of the proposed controllers. The introduced solutions enable USVs to follow complex trajectories in an adverse environment with varying ocean currents.


2012 ◽  
Vol 60 (3) ◽  
pp. 537-546 ◽  
Author(s):  
W. Kowalczyk ◽  
M. Michałek ◽  
K. Kozłowski

Abstract In this paper the trajectory tracking control algorithm with obstacle avoidance capability is presented. As a robot gets into a neighborhood of the obstacle, the collision avoidance behavior is turned on. It is implemented using the artificial potential function (APF) that increases to infinity as the robot approaches a boundary of the obstacle. This feature guarantees collision avoidance. As avoidance behavior is active only in the neighborhood of the obstacle it does not affect the motion when there is no risk of the collision. Authors show that trajectory of the robot converges to desired one when a robot is out of the APF area. Due to a local characteristic of the APF, the implementation of the algorithm of the robot that uses only on-board sensors is possible. The stability proof is presented for both a near obstacle and obstacle-free areas. Effectiveness of the algorithm is illustrated with experiments on a real robot in an environment with static circle-shaped obstacles.


Author(s):  
Ying Zheng

In this article, an adaptive radial basis function neural network scheme for trajectory tracking control of surface vehicles is proposed. Under complex uncertainties, the proposed controller is designed by combining radial basis function neural network and finite-time control algorithm. Using the novel controller, the stability of accurate trajectory tracking can be ensured and the robustness of control system can be improved. Theoretical proof is proposed by Lyapunov function that the radial basis function neural network controller can make surface vehicle to accurately track desire trajectory steadily. Simulation studies conducted on a prototype CyberShip II demonstrate remarkable performance of proposed control scheme.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2932
Author(s):  
Chongpu Chen ◽  
Jianhua Guo ◽  
Chong Guo ◽  
Xiaohan Li ◽  
Chaoyi Chen

For intelligent vehicles, trajectory tracking control is of vital importance. However, due to the cut-in possibility of adjacent vehicles, trajectory planning of intelligent vehicles is challenging. Therefore, this paper proposes a trajectory tracking control method based on cut-in behavior prediction. A method of cut-in intention recognition is adopted to judge the possibility of adjacent vehicle and the driver preview model is used to predict the trajectory of the cut-in vehicle. The three driving scenarios are divided to manage trajectory planning under different cut-in behaviors. At the same time, the safety distance model is established as the basis for scene conversion. Taking the predicted trajectory of the cut-in vehicle as a reference, the model predictive control (MPC) method is used to plan and control the driving trajectory of the subject vehicle, so as to realize the coordinated control of the subject vehicle and the cut-in vehicle. Finally, the simulation shows that the subject vehicle can effectively recognize the cut-in intention of the adjacent vehicle and predict its trajectory. Facing with the cut-in vehicle, the subject vehicle can take appropriate control actions in advance to ensure the safety. Finally, a smoother coordinate control process is obtained between the subject vehicle and the cut-in vehicle.


2021 ◽  
pp. 231-239
Author(s):  
Aleksandr Andreev ◽  
Olga Peregudova

In this paper, the trajectory tracking control problem of a robot manipulator with cylindrical joints is considered by means of a nonlinear PD controller taking into account the delayed feedback structure. The conclusion about stability of a closed-loop system is obtained on the basis of the development of the direct Lyapunov method in the study of the stability property for a non-autonomous functional differential equation by constructing a Lyapunov functional with a semi-definite time derivative.


2013 ◽  
Vol 419 ◽  
pp. 718-724
Author(s):  
De Xin Xu ◽  
Yan Hui Wei ◽  
Kun Peng He

In order to solve the problem of trajectory tracking of the Quad-rotor UAV, a trajectory tracking control method based on rodrigues formula is proposed in this paper, which can transform the problem of position control to attitude control, thus we can solve the problem of the characteristics of nonlinear, coupled, multivariate and underactuated. A attitude stabilized controller is designed by the Rodrigues formula of rigid rotation. The Lyapunov stability analysis proved the stability of the controller. The simulation result proved that this approach method solve the problem of the trajectory tracking of the Quad-rotor UAV.


Sign in / Sign up

Export Citation Format

Share Document