scholarly journals Fire Detection Method in Smart City Environments Using a Deep-Learning-Based Approach

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 73
Author(s):  
Kuldoshbay Avazov ◽  
Mukhriddin Mukhiddinov ◽  
Fazliddin Makhmudov ◽  
Young Im Cho

In the construction of new smart cities, traditional fire-detection systems can be replaced with vision-based systems to establish fire safety in society using emerging technologies, such as digital cameras, computer vision, artificial intelligence, and deep learning. In this study, we developed a fire detector that accurately detects even small sparks and sounds an alarm within 8 s of a fire outbreak. A novel convolutional neural network was developed to detect fire regions using an enhanced You Only Look Once (YOLO) v4network. Based on the improved YOLOv4 algorithm, we adapted the network to operate on the Banana Pi M3 board using only three layers. Initially, we examined the originalYOLOv4 approach to determine the accuracy of predictions of candidate fire regions. However, the anticipated results were not observed after several experiments involving this approach to detect fire accidents. We improved the traditional YOLOv4 network by increasing the size of the training dataset based on data augmentation techniques for the real-time monitoring of fire disasters. By modifying the network structure through automatic color augmentation, reducing parameters, etc., the proposed method successfully detected and notified the incidence of disastrous fires with a high speed and accuracy in different weather environments—sunny or cloudy, day or night. Experimental results revealed that the proposed method can be used successfully for the protection of smart cities and in monitoring fires in urban areas. Finally, we compared the performance of our method with that of recently reported fire-detection approaches employing widely used performance matrices to test the fire classification results achieved.

2021 ◽  
Author(s):  
Loay Hassan ◽  
Mohamed Abedl-Nasser ◽  
Adel Saleh ◽  
Domenec Puig

Digital breast tomosynthesis (DBT) is one of the powerful breast cancer screening technologies. DBT can improve the ability of radiologists to detect breast cancer, especially in the case of dense breasts, where it beats mammography. Although many automated methods were proposed to detect breast lesions in mammographic images, very few methods were proposed for DBT due to the unavailability of enough annotated DBT images for training object detectors. In this paper, we present fully automated deep-learning breast lesion detection methods. Specifically, we study the effectiveness of two data augmentation techniques (channel replication and channel-concatenation) with five state-of-the-art deep learning detection models. Our preliminary results on a challenging publically available DBT dataset showed that the channel-concatenation data augmentation technique can significantly improve the breast lesion detection results for deep learning-based breast lesion detectors.


Author(s):  
Mubarak Muhammad ◽  
Sertan Serte

Among the areas where AI studies centered on developing models that provide real-time solutions for the real estate industry are real estate price forecasting, building age, and types and design of the building (villa, apartment, floor number). Nevertheless, within the ML sector, DL is an emerging region with an Interest increases every year. As a result, a growing number of DL research are in conferences and papers, models for real estate have begun to emerge. In this study, we present a deep learning method for classification of houses in Northern Cyprus using Convolutional neural network. This work proposes the use of Convolutional neural networks in the classification of houses images. The classification will be based on the house age, house price, number of floors in the house, house type i.e. Villa and Apartment. The first category is Villa versus Apartments class; based on the training dataset of 362 images the class result shows the overall accuracy of 96.40%. The second category is split into two classes according to age of the buildings, namely 0 to 5 years Apartments 6 to 10 years Apartments. This class is to classify the building based on their age and the result shows the accuracy of 87.42%. The third category is villa with roof versus Villa without roof apartments class which also shows the overall accuracy of 87.60%. The fourth category is Villa Price from 10,000 euro to 200,000 Versus Villa Price from 200,000 Euro to above and the result shows the accuracy of 81.84%. The last category consists of three classes namely 2 floor Apartment versus 3 floor Apartment, 2 floor Apartment versus 4 floor Apartment and 2 floor Apartment versus 5 floor Apartment which all shows the accuracy of 83.54%, 82.48% and 84.77% respectively. From the experiments carried out in this thesis and the results obtained we conclude that the main aims and objectives of this thesis which is to used Deep learning in Classification and detection of houses in Northern Cyprus and to test the performance of AlexNet for houses classification was successful. This study will be very significant in creation of smart cities and digitization of real estate sector as the world embrace the used of the vast power of Artificial Intelligence, machine learning and machine vision.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 497
Author(s):  
Sébastien Villon ◽  
Corina Iovan ◽  
Morgan Mangeas ◽  
Laurent Vigliola

With the availability of low-cost and efficient digital cameras, ecologists can now survey the world’s biodiversity through image sensors, especially in the previously rather inaccessible marine realm. However, the data rapidly accumulates, and ecologists face a data processing bottleneck. While computer vision has long been used as a tool to speed up image processing, it is only since the breakthrough of deep learning (DL) algorithms that the revolution in the automatic assessment of biodiversity by video recording can be considered. However, current applications of DL models to biodiversity monitoring do not consider some universal rules of biodiversity, especially rules on the distribution of species abundance, species rarity and ecosystem openness. Yet, these rules imply three issues for deep learning applications: the imbalance of long-tail datasets biases the training of DL models; scarce data greatly lessens the performances of DL models for classes with few data. Finally, the open-world issue implies that objects that are absent from the training dataset are incorrectly classified in the application dataset. Promising solutions to these issues are discussed, including data augmentation, data generation, cross-entropy modification, few-shot learning and open set recognition. At a time when biodiversity faces the immense challenges of climate change and the Anthropocene defaunation, stronger collaboration between computer scientists and ecologists is urgently needed to unlock the automatic monitoring of biodiversity.


Author(s):  
Kottilingam Kottursamy

The role of facial expression recognition in social science and human-computer interaction has received a lot of attention. Deep learning advancements have resulted in advances in this field, which go beyond human-level accuracy. This article discusses various common deep learning algorithms for emotion recognition, all while utilising the eXnet library for achieving improved accuracy. Memory and computation, on the other hand, have yet to be overcome. Overfitting is an issue with large models. One solution to this challenge is to reduce the generalization error. We employ a novel Convolutional Neural Network (CNN) named eXnet to construct a new CNN model utilising parallel feature extraction. The most recent eXnet (Expression Net) model improves on the previous model's inaccuracy while having many fewer parameters. Data augmentation techniques that have been in use for decades are being utilized with the generalized eXnet. It employs effective ways to reduce overfitting while maintaining overall size under control.


Author(s):  
A. Loulidi ◽  
R. Houssa ◽  
L. Buhl-Mortensen ◽  
H. Zidane ◽  
H. Rhinane

Abstract. The marine environment provides many ecosystems that support habitats biodiversity. Benthic habitats and fish species associations are investigated using underwater gears to secure and manage these marine ecosystems in a sustainable manner. The current study evaluates the possibility of using deep learning methods in particular the You Only Look Once version 3 algorithm to detect fish in different environments such as; different shading, low light, and high noise within images and by each frame within an underwater video, recorded in the Atlantic Coast of Morocco. The training dataset was collected from Open Images Dataset V6, a total of 1295 Fish images were captured and split into a training set and a test set. An optimization approach was applied to the YOLOv3 algorithm which is data augmentation transformation to provide more learning samples. The mean average precision (mAP) metric was applied to measure the YOLOv3 model’s performance. Results of this study revealed with a mAP of 91,3% the proposed method is proved to have the capability of detecting fish species in different natural marine environments also it has the potential to be applied to detect other underwater species and substratum.


Author(s):  
M. Buyukdemircioglu ◽  
R. Can ◽  
S. Kocaman

Abstract. Automatic detection, segmentation and reconstruction of buildings in urban areas from Earth Observation (EO) data are still challenging for many researchers. Roof is one of the most important element in a building model. The three-dimensional geographical information system (3D GIS) applications generally require the roof type and roof geometry for performing various analyses on the models, such as energy efficiency. The conventional segmentation and classification methods are often based on features like corners, edges and line segments. In parallel to the developments in computer hardware and artificial intelligence (AI) methods including deep learning (DL), image features can be extracted automatically. As a DL technique, convolutional neural networks (CNNs) can also be used for image classification tasks, but require large amount of high quality training data for obtaining accurate results. The main aim of this study was to generate a roof type dataset from very high-resolution (10 cm) orthophotos of Cesme, Turkey, and to classify the roof types using a shallow CNN architecture. The training dataset consists 10,000 roof images and their labels. Six roof type classes such as flat, hip, half-hip, gable, pyramid and complex roofs were used for the classification in the study area. The prediction performance of the shallow CNN model used here was compared with the results obtained from the fine-tuning of three well-known pre-trained networks, i.e. VGG-16, EfficientNetB4, ResNet-50. The results show that although our CNN has slightly lower performance expressed with the overall accuracy, it is still acceptable for many applications using sparse data.


2021 ◽  
Vol 11 (9) ◽  
pp. 842
Author(s):  
Shruti Atul Mali ◽  
Abdalla Ibrahim ◽  
Henry C. Woodruff ◽  
Vincent Andrearczyk ◽  
Henning Müller ◽  
...  

Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews.


2020 ◽  
Vol 2 (3) ◽  
pp. 168-174 ◽  
Author(s):  
Dr. Akey Sungheetha ◽  
Dr. Rajesh Sharma R

Smart cities with smart infrastructure is a rapidly flourishing field of research in the modern days. Open areas, agricultural land, forests, office, homes and several areas can have occurrences of fire accidents leading to loss of significant resources. Unmanned Aerial Vehicle (UAV) and wireless sensor network technologies are used fir detection of fire at an early stage in this paper. This helps in avoiding serious fire accidents. The environmental parameters are monitored using the sensor architecture. The sensors uses IoT based applications for processing the gathered environmental data. Cloud computing, IoT sensors, wireless technology and UAVs are combined for the purpose of fire detection in this paper. In order to improve the accuracy of the system, integration of image processing schemes is done in this system. The rules are formulated such that the true detection rate is improved. The existing state-of-the-art models are compared with the proposed system. The simulation results show that the rate of fire detection of the proposed system is improved for up to 98% when compared to the traditional models.


Sign in / Sign up

Export Citation Format

Share Document