scholarly journals Ancillary Service with Grid Connected PV: A Real-Time Hardware-in-the-Loop Approach for Evaluation of Performances

Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 809 ◽  
Author(s):  
Yujia Huo ◽  
Giambattista Gruosso

The integration of photovoltaic (PV) systems with the grid is undoubtedly an issue of great interest both in terms of energy production, but also as a support to the grid as an ancillary service, but to evaluate the performance of the use of PV in an unconventional way, it is necessary to have reference models to be applied to evaluate the characteristics and integration requirements. In this work, an ancillary service provided by a grid-connected PV is shown and a hardware in the loop simulation environment is created to simulate performances and integration issues.

2010 ◽  
Vol 1 (1/2/3) ◽  
pp. 5 ◽  
Author(s):  
Vasily V. Balashov ◽  
Anatoly G. Bakhmurov ◽  
Maxim V. Chistolinov ◽  
Ruslan L. Smeliansky ◽  
Dmitry Y. Volkanov ◽  
...  

2000 ◽  
Vol 1727 (1) ◽  
pp. 95-100 ◽  
Author(s):  
David E. Lucas ◽  
Pitu B. Mirchandani ◽  
K. Larry Head

Simulation is a valuable tool for evaluating the effects of various changes in a transportation system. This is especially true in the case of real-time traffic-adaptive control systems, which must undergo extensive testing in a laboratory setting before being implemented in a field environment. Various types of simulation environments are available, from software-only to hardware-in-the-loop simulations, each of which has a role to play in the implementation of a traffic control system. The RHODES (real-time hierarchical optimized distributed effective system) real-time traffic-adaptive control system was followed as it progressed from a laboratory project toward actual field implementation. The traditional software-only simulation environment and extensions to a hardware-in-the-loop simulation are presented in describing the migration of RHODES onto the traffic controller hardware itself. In addition, a new enhancement to the standard software-only simulation that allows remote access is described. The enhancement removes the requirement that both the simulation and the traffic control scheme reside locally. This architecture is capable of supporting any traffic simulation package that satisfies specific input-output data requirements. This remote simulation environment was tested with several different types of networks and was found to perform in the same manner as its local counterpart. Remote simulation has all of the advantages of its local counterpart, such as control and flexibility, with the added benefit of distribution. This remote environment could be used in many different ways and by different groups or individuals, including state or local transportation agencies interested in performing their own evaluations of alternative traffic control systems.


2017 ◽  
Vol 66 (4) ◽  
pp. 773-786
Author(s):  
Robert Stala ◽  
Adam Penczek ◽  
Andrzej Mondzik ◽  
Łukasz Stawiarski

Abstract This paper presents a novel, low-complexity method of simulating PV source characteristics suitable for real-time modeling and hardware implementation. The application of the suitable model of the PV source as well as the model of all the PV system components in a real-time hardware gives a safe, fast and low cost method of testing PV systems. The paper demonstrates the concept of the PV array model and the hardware implementation in FPGAs of the system which combines two PV arrays. The obtained results confirm that the proposed model is of low complexity and can be suitable for hardware in the loop (HIL) tests of the complex PV system control, with various arrays operating under different conditions.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3274
Author(s):  
Jose Rueda Torres ◽  
Zameer Ahmad ◽  
Nidarshan Veera Kumar ◽  
Elyas Rakhshani ◽  
Ebrahim Adabi ◽  
...  

Future electrical power systems will be dominated by power electronic converters, which are deployed for the integration of renewable power plants, responsive demand, and different types of storage systems. The stability of such systems will strongly depend on the control strategies attached to the converters. In this context, laboratory-scale setups are becoming the key tools for prototyping and evaluating the performance and robustness of different converter technologies and control strategies. The performance evaluation of control strategies for dynamic frequency support using fast active power regulation (FAPR) requires the urgent development of a suitable power hardware-in-the-loop (PHIL) setup. In this paper, the most prominent emerging types of FAPR are selected and studied: droop-based FAPR, droop derivative-based FAPR, and virtual synchronous power (VSP)-based FAPR. A novel setup for PHIL-based performance evaluation of these strategies is proposed. The setup combines the advanced modeling and simulation functions of a real-time digital simulation platform (RTDS), an external programmable unit to implement the studied FAPR control strategies as digital controllers, and actual hardware. The hardware setup consists of a grid emulator to recreate the dynamic response as seen from the interface bus of the grid side converter of a power electronic-interfaced device (e.g., type-IV wind turbines), and a mockup voltage source converter (VSC, i.e., a device under test (DUT)). The DUT is virtually interfaced to one high-voltage bus of the electromagnetic transient (EMT) representation of a variant of the IEEE 9 bus test system, which has been modified to consider an operating condition with 52% of the total supply provided by wind power generation. The selected and programmed FAPR strategies are applied to the DUT, with the ultimate goal of ascertaining its feasibility and effectiveness with respect to the pure software-based EMT representation performed in real time. Particularly, the time-varying response of the active power injection by each FAPR control strategy and the impact on the instantaneous frequency excursions occurring in the frequency containment periods are analyzed. The performed tests show the degree of improvements on both the rate-of-change-of-frequency (RoCoF) and the maximum frequency excursion (e.g., nadir).


2021 ◽  
Vol 13 (3) ◽  
pp. 1537
Author(s):  
Irene Zluwa ◽  
Ulrike Pitha

In the case of building surfaces, the installation of green roofs or green facades can be used to reduce the temperature of the environment and the building. In addition, introducing photovoltaic energy production will help to reduce CO2 emissions. Both approaches (building greenery and photovoltaic energy production) compete, as both of them are located on the exterior of buildings. This paper aims to give an overview of solutions for the combination of building greenery (BG) systems and photovoltaic (PV) panels. Planning principles for different applications are outlined in a guideline for planning a sustainable surface on contemporary buildings. A comprehensive literature review was done. Identified solutions of combinations were systematically analysed and discussed in comparison with additional relevant literature. The main findings of this paper were: (A) BG and PV systems with low sub-construction heights require shallow substrates/low growing plants, whereas in the case of the combination of (a semi)-intensive GR system, a distance of a minimum 60 cm between the substrate surface and lower panel edge is recommended; (B) The cooling effect of the greenery depends on the distance between the PV and the air velocity; (C) if the substrate is dry, there is no evapotranspiration and therefore no cooling effect; (D) A spectrum of different PV systems, sub-constructions, and plants for the combination of BG and PV is necessary and suitable for different applications shown within the publication.


2021 ◽  
pp. 1-27
Author(s):  
D. Sartori ◽  
F. Quagliotti ◽  
M.J. Rutherford ◽  
K.P. Valavanis

Abstract Backstepping represents a promising control law for fixed-wing Unmanned Aerial Vehicles (UAVs). Its non-linearity and its adaptation capabilities guarantee adequate control performance over the whole flight envelope, even when the aircraft model is affected by parametric uncertainties. In the literature, several works apply backstepping controllers to various aspects of fixed-wing UAV flight. Unfortunately, many of them have not been implemented in a real-time controller, and only few attempt simultaneous longitudinal and lateral–directional aircraft control. In this paper, an existing backstepping approach able to control longitudinal and lateral–directional motions is adapted for the definition of a control strategy suitable for small UAV autopilots. Rapidly changing inner-loop variables are controlled with non-adaptive backstepping, while slower outer loop navigation variables are Proportional–Integral–Derivative (PID) controlled. The controller is evaluated through numerical simulations for two very diverse fixed-wing aircraft performing complex manoeuvres. The controller behaviour with model parametric uncertainties or in presence of noise is also tested. The performance results of a real-time implementation on a microcontroller are evaluated through hardware-in-the-loop simulation.


Sign in / Sign up

Export Citation Format

Share Document