scholarly journals Medium Access-Based Scheduling Scheme for Cyber Physical Systems in 5G Networks

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 639
Author(s):  
Safdar Nawaz Khan Marwat ◽  
Muhammad Shuaib ◽  
Salman Ahmed ◽  
Abdul Hafeez ◽  
Muhammad Tufail

The development of the 5G mobile communication standard attempts to meet the future needs of data users. The impact of Cyber Physical Systems (CPS) is crucial in Internet of Things (IoT) and other emerging technologies. The design of medium access mechanisms for CPS such as radio resource scheduling schemes has a significant effect on network performance. Recent literature shows that limited work is available on uplink scheduling schemes, particularly in the 5G domain. Planning a network that can address the modern needs of users entails efficient CPS scheduling mechanisms such that resources are amicably distributed between users of contrasting priorities. The prime focus of this work is to design and develop an uplink radio resource scheduling framework for CPS-based future networks such as 5G. In the designed framework, scarce radio resources are sought to be distributed efficiently according to the service-based needs of users. The proposed scheduling scheme is a service aware (SA) scheduler designed for CPS in accordance with the 5G network peculiarities, intended to achieve higher throughput and reduced latency. The proposed SA scheduler supports multi-bearer traffic and is capable of providing resources in adverse channel conditions in an efficient manner. The SA scheduling mechanism’s performance is evaluated and compared with renowned scheduling algorithms such as blind equal throughput (BET), maximum throughput (MT), and proportional fair (PF) scheduling schemes. The simulation results obtained in a cellular environment demonstrate that the SA scheduler achieves acceptable cell throughput and end-to-end delay results in all scenarios and out-performs other contemporary scheduling schemes.

Economies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 39 ◽  
Author(s):  
Majid Ziaei Nafchi ◽  
Hana Mohelská

Industry 4.0 is the essence of the fourth Industrial revolution and is happening right now in manufacturing by using cyber-physical systems (CPS) to reach high levels of automation. Industry 4.0 is especially beneficial in highly developed countries in terms of competitive advantage, but causes unemployment because of high levels of automation. The aim of this paper is to find out if the impact of adopting Industry 4.0 on the labor markets of Iran and Japan would be the same, and to make analysis to find out whether this change is possible for Iran and Japan with their current infrastructures, economy, and policies. With the present situation of Iran in science, technology, and economy, it will be years before Iran could, or better say should, implement Industry 4.0. Japan is able to adopt Industry 4.0 much earlier than Iran and with less challenges ahead; this does not mean that the Japanese labor market would not be affected by this change but it means that those effects would not cause as many difficulties as they would for Iran.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142091031
Author(s):  
Rafael Arrais ◽  
Paulo Ribeiro ◽  
Henrique Domingos ◽  
Germano Veiga

Motivated by the Fourth Industrial Revolution, there is an ever-increasing need to integrated Cyber-Physical Systems in industrial production environments. To address the demand for flexible robotics in contemporary industrial environments and the necessity to integrate robots and automation equipment in an efficient manner, an effective, bidirectional, reliable and structured data interchange mechanism is required. As an answer to these requirements, this article presents ROBIN, an open-source middleware for achieving interoperability between the Robot Operating System and CODESYS, a softPLC that can run on embedded devices and that supports a variety of fieldbuses and industrial network protocols. The referred middleware was successfully applied and tested in various industrial applications such as battery management systems, motion, robotic manipulator and safety hardware control, and horizontal integration between a mobile manipulator and a conveyor system.


Sign in / Sign up

Export Citation Format

Share Document