scholarly journals Current Regulator Design for Dual Y Shift 30 Degrees Permanent Magnet Synchronous Motor

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 777
Author(s):  
Zhihong Wu ◽  
Weisong Gu ◽  
Yuan Zhu ◽  
Ke Lu ◽  
Li Chen ◽  
...  

This paper gives the current regulator design for a dual Y shift 30 degrees permanent magnet synchronous motor (DT_PMSM) based on the vector space decomposition (VSD). Current regulator design in α-β subspace is insufficient and designing additional controllers in x-y subspace is necessary to eliminate the harmonic currents due to the nonlinear characteristics of the inverter. A sliding mode controller based on an internal model is proposed in α-β subspace, which is robust to the parameter uncertainties and disturbances in current control loops. In order to eliminate the harmonic currents in x-y subspace, a resonant controller is employed based on a new synchronous rotating matrix. Three-phase decomposition space vector pulse width modulation (SVPWM) technique is illustrated for the purpose of synthesizing the voltage vectors in both subspaces simultaneously. The feasibility and efficiency of the suggested current regulator design are validated by a set of experimental results.

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1508 ◽  
Author(s):  
Adel Merabet

This paper presents a cascade second-order sliding mode control scheme applied to a permanent magnet synchronous motor for speed tracking applications. The control system is comprised of two control loops for the speed and the armature current control, where the command of the speed controller (outer loop) is the reference of the q-current controller (inner loop) that forms the cascade structure. The sliding mode control algorithm is based on a single input-output state space model and a second order control structure. The proposed cascade second order sliding mode control approach is validated on an experimental permanent magnet synchronous motor drive. Experimental results are provided to validate the effectiveness of the proposed control strategy with respect to speed and current control. Moreover, the robustness of the second-order sliding mode controller is guaranteed in terms of unknown disturbances and parametric and modeling uncertainties.


Author(s):  
Enrique Alvaro-Mendoza ◽  
Oscar S Salas-Peña ◽  
Jesús De León-Morales

In this article, a sensorless speed control design for the interior permanent magnet synchronous motor based on sliding mode approach is proposed. The control objective is to drive the rotor speed to desired reference despite load torque disturbances and parameter uncertainties. The proposed control strategy combines a Sliding Mode Controller with an Adaptive Interconnected Observer design based on sliding mode techniques, which allows to estimate the rotor speed, the stator resistance and the load torque. Furthermore, experimental results, including a comparative study against schemes from literature, illustrate the robustness and performance of proposed approach.


Author(s):  
Ifeanyi Chinaeke-Ogbuka ◽  
Augustine Ajibo ◽  
Kenneth Odo ◽  
Uche Ogbuefi ◽  
Muncho Mbunwe ◽  
...  

A robust high-speed sliding mode control (SMC) of three phase permanent magnet synchronous motor (PMSM) is presented. The SMC served for inner speed control while a simplified hysteresis current control (HCC) scheme was used in the outer current control to generate gating signals for the inverter switches. The present research leverages on the ability of SMC to directly access system speed error which it attempts driving to zero by cancelling modelling uncertainties and disturbances. Performance comparison was done for the SMC model and an existing model having classical PI controller. With the initial positive speed command of 200 rpm at 5 Nm constant loading, rotor speed with SMC neatly settled to the reference speed at 0.085 seconds without overshoot while the rotor speed of the model with PI controller settled at 0.217 seconds after overshoot. This translates to 155.3% speed enhancement. Similar superior speed performance of the SMC was also observed during recovering from sudden speed reversal. While the SMC model recovered and settled to the reference speed of -200 rpm at 0.369 seconds, the model with PI controller settled at 0.482 seconds. From the results, it can be seen that SMC demonstared superiority over the conventioanl PI controller for complex drives systems.


Sign in / Sign up

Export Citation Format

Share Document