scholarly journals Innovative Deep Neural Network Modeling for Fine-Grained Chinese Entity Recognition

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1001 ◽  
Author(s):  
Jingang Liu ◽  
Chunhe Xia ◽  
Haihua Yan ◽  
Wenjing Xu

Named entity recognition (NER) is a basic but crucial task in the field of natural language processing (NLP) and big data analysis. The recognition of named entities based on Chinese is more complicated and difficult than English, which makes the task of NER in Chinese more challenging. In particular, fine-grained named entity recognition is more challenging than traditional named entity recognition tasks, mainly because fine-grained tasks have higher requirements for the ability of automatic feature extraction and information representation of deep neural models. In this paper, we propose an innovative neural network model named En2BiLSTM-CRF to improve the effect of fine-grained Chinese entity recognition tasks. This proposed model including the initial encoding layer, the enhanced encoding layer, and the decoding layer combines the advantages of pre-training model encoding, dual bidirectional long short-term memory (BiLSTM) networks, and a residual connection mechanism. Hence, it can encode information multiple times and extract contextual features hierarchically. We conducted sufficient experiments on two representative datasets using multiple important metrics and compared them with other advanced baselines. We present promising results showing that our proposed En2BiLSTM-CRF has better performance as well as better generalization ability in both fine-grained and coarse-grained Chinese entity recognition tasks.

2018 ◽  
Vol 10 (12) ◽  
pp. 123 ◽  
Author(s):  
Mohammed Ali ◽  
Guanzheng Tan ◽  
Aamir Hussain

Recurrent neural network (RNN) has achieved remarkable success in sequence labeling tasks with memory requirement. RNN can remember previous information of a sequence and can thus be used to solve natural language processing (NLP) tasks. Named entity recognition (NER) is a common task of NLP and can be considered a classification problem. We propose a bidirectional long short-term memory (LSTM) model for this entity recognition task of the Arabic text. The LSTM network can process sequences and relate to each part of it, which makes it useful for the NER task. Moreover, we use pre-trained word embedding to train the inputs that are fed into the LSTM network. The proposed model is evaluated on a popular dataset called “ANERcorp.” Experimental results show that the model with word embedding achieves a high F-score measure of approximately 88.01%.


Information ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Shardrom Johnson ◽  
Sherlock Shen ◽  
Yuanchen Liu

Usually taken as linguistic features by Part-Of-Speech (POS) tagging, Named Entity Recognition (NER) is a major task in Natural Language Processing (NLP). In this paper, we put forward a new comprehensive-embedding, considering three aspects, namely character-embedding, word-embedding, and pos-embedding stitched in the order we give, and thus get their dependencies, based on which we propose a new Character–Word–Position Combined BiLSTM-Attention (CWPC_BiAtt) for the Chinese NER task. Comprehensive-embedding via the Bidirectional Llong Short-Term Memory (BiLSTM) layer can get the connection between the historical and future information, and then employ the attention mechanism to capture the connection between the content of the sentence at the current position and that at any location. Finally, we utilize Conditional Random Field (CRF) to decode the entire tagging sequence. Experiments show that CWPC_BiAtt model we proposed is well qualified for the NER task on Microsoft Research Asia (MSRA) dataset and Weibo NER corpus. A high precision and recall were obtained, which verified the stability of the model. Position-embedding in comprehensive-embedding can compensate for attention-mechanism to provide position information for the disordered sequence, which shows that comprehensive-embedding has completeness. Looking at the entire model, our proposed CWPC_BiAtt has three distinct characteristics: completeness, simplicity, and stability. Our proposed CWPC_BiAtt model achieved the highest F-score, achieving the state-of-the-art performance in the MSRA dataset and Weibo NER corpus.


Author(s):  
Erdenebileg Batbaatar ◽  
Keun Ho Ryu

Named Entity Recognition (NER) in the healthcare domain involves identifying and categorizing disease, drugs, and symptoms for biosurveillance, extracting their related properties and activities, and identifying adverse drug events appearing in texts. These tasks are important challenges in healthcare. Analyzing user messages in social media networks such as Twitter can provide opportunities to detect and manage public health events. Twitter provides a broad range of short messages that contain interesting information for information extraction. In this paper, we present a Health-Related Named Entity Recognition (HNER) task using healthcare-domain ontology that can recognize health-related entities from large numbers of user messages from Twitter. For this task, we employ a deep learning architecture which is based on a recurrent neural network (RNN) with little feature engineering. To achieve our goal, we collected a large number of Twitter messages containing health-related information, and detected biomedical entities from the Unified Medical Language System (UMLS). A bidirectional long short-term memory (BiLSTM) model learned rich context information, and a convolutional neural network (CNN) was used to produce character-level features. The conditional random field (CRF) model predicted a sequence of labels that corresponded to a sequence of inputs, and the Viterbi algorithm was used to detect health-related entities from Twitter messages. We provide comprehensive results giving valuable insights for identifying medical entities in Twitter for various applications. The BiLSTM-CRF model achieved a precision of 93.99%, recall of 73.31%, and F1-score of 81.77% for disease or syndrome HNER; a precision of 90.83%, recall of 81.98%, and F1-score of 87.52% for sign or symptom HNER; and a precision of 94.85%, recall of 73.47%, and F1-score of 84.51% for pharmacologic substance named entities. The ontology-based manual annotation results show that it is possible to perform high-quality annotation despite the complexity of medical terminology and the lack of context in tweets.


2020 ◽  
Vol 10 (16) ◽  
pp. 5711
Author(s):  
Yu Wang ◽  
Yining Sun ◽  
Zuchang Ma ◽  
Lisheng Gao ◽  
Yang Xu

Named Entity Recognition (NER) is the fundamental task for Natural Language Processing (NLP) and the initial step in building a Knowledge Graph (KG). Recently, BERT (Bidirectional Encoder Representations from Transformers), which is a pre-training model, has achieved state-of-the-art (SOTA) results in various NLP tasks, including the NER. However, Chinese NER is still a more challenging task for BERT because there are no physical separations between Chinese words, and BERT can only obtain the representations of Chinese characters. Nevertheless, the Chinese NER cannot be well handled with character-level representations, because the meaning of a Chinese word is quite different from that of the characters, which make up the word. ERNIE (Enhanced Representation through kNowledge IntEgration), which is an improved pre-training model of BERT, is more suitable for Chinese NER because it is designed to learn language representations enhanced by the knowledge masking strategy. However, the potential of ERNIE has not been fully explored. ERNIE only utilizes the token-level features and ignores the sentence-level feature when performing the NER task. In this paper, we propose the ERNIE-Joint, which is a joint model based on ERNIE. The ERNIE-Joint can utilize both the sentence-level and token-level features by joint training the NER and text classification tasks. In order to use the raw NER datasets for joint training and avoid additional annotations, we perform the text classification task according to the number of entities in the sentences. The experiments are conducted on two datasets: MSRA-NER and Weibo. These datasets contain Chinese news data and Chinese social media data, respectively. The results demonstrate that the ERNIE-Joint not only outperforms BERT and ERNIE but also achieves the SOTA results on both datasets.


Author(s):  
Hsu Myat Mo ◽  
Khin Mar Soe

Myanmar language is a low-resource language and this is one of the main reasons why Myanmar Natural Language Processing lagged behind compared to other languages. Currently, there is no publicly available named entity corpus for Myanmar language. As part of this work, a very first manually annotated Named Entity tagged corpus for Myanmar language was developed and proposed to support the evaluation of named entity extraction. At present, our named entity corpus contains approximately 170,000 name entities and 60,000 sentences. This work also contributes the first evaluation of various deep neural network architectures on Myanmar Named Entity Recognition. Experimental results of the 10-fold cross validation revealed that syllable-based neural sequence models without additional feature engineering can give better results compared to baseline CRF model. This work also aims to discover the effectiveness of neural network approaches to textual processing for Myanmar language as well as to promote future research works on this understudied language.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xuming Han ◽  
Feng Zhou ◽  
Zhiyuan Hao ◽  
Qiaoming Liu ◽  
Yong Li ◽  
...  

Named entity recognition (NER) is a subtask in natural language processing, and its accuracy greatly affects the effectiveness of downstream tasks. Aiming at the problem of insufficient expression of potential Chinese features in named entity recognition tasks, this paper proposes a multifeature adaptive fusion Chinese named entity recognition (MAF-CNER) model. The model uses bidirectional long short-term memory (BiLSTM) neural network to extract stroke and radical features and adopts a weighted concatenation method to fuse two sets of features adaptively. This method can better integrate the two sets of features, thereby improving the model entity recognition ability. In order to fully test the entity recognition performance of this model, we compared the basic model and other mainstream models on Microsoft Research Asia (MSRA) and “China People’s Daily” dataset from January to June 1998. Experimental results show that this model is better than other models, with F1 values of 97.01% and 96.78%, respectively.


2021 ◽  
Vol 11 (19) ◽  
pp. 9038
Author(s):  
Wazir Ali ◽  
Jay Kumar ◽  
Zenglin Xu ◽  
Rajesh Kumar ◽  
Yazhou Ren

Named entity recognition (NER) is a fundamental task in many natural language processing (NLP) applications, such as text summarization and semantic information retrieval. Recently, deep neural networks (NNs) with the attention mechanism yield excellent performance in NER by taking advantage of character-level and word-level representation learning. In this paper, we propose a deep context-aware bidirectional long short-term memory (CaBiLSTM) model for the Sindhi NER task. The model relies upon contextual representation learning (CRL), bidirectional encoder, self-attention, and sequential conditional random field (CRF). The CaBiLSTM model incorporates task-oriented CRL based on joint character-level and word-level representations. It takes character-level input to learn the character representations. Afterwards, the character representations are transformed into word features, and the bidirectional encoder learns the word representations. The output of the final encoder is fed into the self-attention through a hidden layer before decoding. Finally, we employ the CRF for the prediction of label sequences. The baselines and the proposed CaBiLSTM model are compared by exploiting pretrained Sindhi GloVe (SdGloVe), Sindhi fastText (SdfastText), task-oriented, and CRL-based word representations on the recently proposed SiNER dataset. Our proposed CaBiLSTM model achieved a high F1-score of 91.25% on the SiNER dataset with CRL without relying on additional handmade features, such as hand-crafted rules, gazetteers, or dictionaries.


2020 ◽  
Vol 10 (21) ◽  
pp. 7557
Author(s):  
Chirawan Ronran ◽  
Seungwoo Lee ◽  
Hong Jun Jang

Named Entity Recognition (NER) plays a vital role in natural language processing (NLP). Currently, deep neural network models have achieved significant success in NER. Recent advances in NER systems have introduced various feature selections to identify appropriate representations and handle Out-Of-the-Vocabulary (OOV) words. After selecting the features, they are all concatenated at the embedding layer before being fed into a model to label the input sequences. However, when concatenating the features, information collisions may occur and this would cause the limitation or degradation of the performance. To overcome the information collisions, some works tried to directly connect some features to latter layers, which we call the delayed combination and show its effectiveness by comparing it to the early combination. As feature encodings for input, we selected the character-level Convolutional Neural Network (CNN) or Long Short-Term Memory (LSTM) word encoding, the pre-trained word embedding, and the contextual word embedding and additionally designed CNN-based sentence encoding using a dictionary. These feature encodings are combined at early or delayed position of the bidirectional LSTM Conditional Random Field (CRF) model according to each feature’s characteristics. We evaluated the performance of this model on the CoNLL 2003 and OntoNotes 5.0 datasets using the F1 score and compared the delayed combination model with our own implementation of the early combination as well as the previous works. This comparison convinces us that our delayed combination is more effective than the early one and also highly competitive.


Author(s):  
Yu Wang ◽  
Yining Sun ◽  
Zuchang Ma ◽  
Lisheng Gao ◽  
Yang Xu

Electronic medical records (EMRs) contain valuable information about the patients, such as clinical symptoms, diagnostic results, and medications. Named entity recognition (NER) aims to recognize entities from unstructured text, which is the initial step toward the semantic understanding of the EMRs. Extracting medical information from Chinese EMRs could be a more complicated task because of the difference between English and Chinese. Some researchers have noticed the importance of Chinese NER and used the recurrent neural network or convolutional neural network (CNN) to deal with this task. However, it is interesting to know whether the performance could be improved if the advantages of the RNN and CNN can be both utilized. Moreover, RoBERTa-WWM, as a pre-training model, can generate the embeddings with word-level features, which is more suitable for Chinese NER compared with Word2Vec. In this article, we propose a hybrid model. This model first obtains the entities identified by bidirectional long short-term memory and CNN, respectively, and then uses two hybrid strategies to output the final results relying on these entities. We also conduct experiments on raw medical records from real hospitals. This dataset is provided by the China Conference on Knowledge Graph and Semantic Computing in 2019 (CCKS 2019). Results demonstrate that the hybrid model can improve performance significantly.


Author(s):  
Yashvardhan Sharma ◽  
Rupal Bhargava ◽  
Bapiraju Vamsi Tadikonda

With the increase of internet applications and social media platforms there has been an increase in the informal way of text communication. People belonging to different regions tend to mix their regional language with English on social media text. This has been the trend with many multilingual nations now and is commonly known as code mixing. In code mixing, multiple languages are used within a statement. The problem of named entity recognition (NER) is a well-researched topic in natural language processing (NLP), but the present NER systems tend to perform inefficiently on code-mixed text. This paper proposes three approaches to improve named entity recognizers for handling code-mixing. The first approach is based on machine learning techniques such as support vector machines and other tree-based classifiers. The second approach is based on neural networks and the third approach uses long short-term memory (LSTM) architecture to solve the problem.


Sign in / Sign up

Export Citation Format

Share Document