scholarly journals Constructing of Digital Watermark Based on Generalized Fourier Transform

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1108 ◽  
Author(s):  
Ivanna Dronyuk ◽  
Olga Fedevych ◽  
Natalia Kryvinska

We develop in this paper a method for constructing a digital watermark to protect one-dimensional and two-dimensional signals. The creation of a digital watermark is based on the one-dimensional and two-dimensional generalized Fourier and Hartley transformations and the Ateb-functions as a generalization of trigonometric functions. The embedding of the digital watermark is realized in the frequency domain. The simulation of attacks on protected files is carried out to confirm the stability of the proposed method. Experiments proved the high stability of the developed method conformably to the main types of attacks. An additional built-in digital watermark can be used to identify protected files. The proposed method can be used to support the security of a variety of signals—audio, images, electronic files etc.—to protect them from unauthorized access and as well for identification.

Geophysics ◽  
1970 ◽  
Vol 35 (2) ◽  
pp. 358-358 ◽  
Author(s):  
H. A. Meinardus

The authors do not state explicitly that equations (1) and (12) express gravity anomalies of the two‐dimensional cylinder and fault respectively. These structures have an infinite extension along the strike, and all the gravity profiles perpendicular to the strike are identical. For this reason it is admissible to apply the one‐dimensional Fourier transform to obtain the one‐dimensional amplitude spectra shown in Figures (1) and (5). The situation, however, is different for the sphere, which does not have a one‐dimensional gravity profile in the above sense, but rather a two‐dimensional field with cylindrical symmetry. Instead of using the one‐dimensional Fourier transform as given by (6) along a straight line, we must apply the two‐dimensional Fourier transform over the whole area. Because of the circular symmetry, one radial variable will suffice in place of the two Cartesian coordinates x and y, and the two‐dimensional Fourier transform can be expressed as Hankel transform, so that equation (6) becomes [Formula: see text]


1999 ◽  
Vol 401 ◽  
pp. 311-338 ◽  
Author(s):  
GARY J. SHARPE

In this paper we investigate the linear stability of detonations in which the underlying steady one-dimensional solutions are of the pathological type. Such detonations travel at a minimum speed, which is greater than the Chapman–Jouguet (CJ) speed, have an internal frozen sonic point at which the thermicity vanishes, and the unsupported wave is supersonic (i.e. weak) after the sonic point. Pathological detonations are possible when there are endothermic or dissipative effects present in the system. We consider a system with two consecutive irreversible reactions A→B→C, with an Arrhenius form of the reaction rates and the second reaction endothermic. We determine analytical asymptotic solutions valid near the sonic pathological point for both the one-dimensional steady equations and the equations for linearized perturbations. These are used as initial conditions for integrating the equations. We show that, apart from the existence of stable modes, the linear stability of the pathological detonation is qualitatively the same as for CJ detonations for both one- and two-dimensional disturbances. We also consider the stability of overdriven detonations for the system. We show that the frequency of oscillation for one-dimensional disturbances, and the cell size based on the wavenumber with the highest group velocity for two-dimensional disturbances, are both very sensitive to the detonation speed for overdriven detonations near the pathological speed. This dependence on the degree of overdrive is quite different from that obtained when the unsupported detonation is of the CJ type.


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Ginger Egberts ◽  
Fred Vermolen ◽  
Paul van Zuijlen

AbstractTo deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the concentration of signaling molecules, the cellular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we present stability constraints for the one-dimensional counterpart of this morphoelastic model, for both the continuous and (semi-) discrete problem. We show that the truncation error between these eigenvalues associated with the continuous and semi-discrete problem is of order $${{\mathcal {O}}}(h^2)$$ O ( h 2 ) . Next we perform numerical validation to these constraints and provide a biological interpretation of the (in)stability. For the mechanical part of the model, the results show the components reach equilibria in a (non) monotonic way, depending on the value of the viscosity. The results show that the parameters of the chemical part of the model need to meet the stability constraint, depending on the decay rate of the signaling molecules, to avoid unrealistic results.


2021 ◽  
Vol 22 (4) ◽  
pp. 2030
Author(s):  
Hela Ferjani ◽  
Hammouda Chebbi ◽  
Mohammed Fettouhi

The new organic–inorganic compound (C6H9N2)2BiCl5 (I) has been grown by the solvent evaporation method. The one-dimensional (1D) structure of the allylimidazolium chlorobismuthate (I) has been determined by single crystal X-ray diffraction. It crystallizes in the centrosymmetric space group C2/c and consists of 1-allylimidazolium cations and (1D) chains of the anion BiCl52−, built up of corner-sharing [BiCl63−] octahedra which are interconnected by means of hydrogen bonding contacts N/C–H⋯Cl. The intermolecular interactions were quantified using Hirshfeld surface analysis and the enrichment ratio established that the most important role in the stability of the crystal structure was provided by hydrogen bonding and H···H interactions. The highest value of E was calculated for the contact N⋯C (6.87) followed by C⋯C (2.85) and Bi⋯Cl (2.43). These contacts were favored and made the main contribution to the crystal packing. The vibrational modes were identified and assigned by infrared and Raman spectroscopy. The optical band gap (Eg = 3.26 eV) was calculated from the diffuse reflectance spectrum and showed that we can consider the material as a semiconductor. The density functional theory (DFT) has been used to determine the calculated gap, which was about 3.73 eV, and to explain the electronic structure of the title compound, its optical properties, and the stability of the organic part by the calculation of HOMO and LUMO energy and the Fukui indices.


2003 ◽  
Vol 14 (08) ◽  
pp. 1087-1105 ◽  
Author(s):  
ZHONGCHENG WANG ◽  
YONGMING DAI

A new twelfth-order four-step formula containing fourth derivatives for the numerical integration of the one-dimensional Schrödinger equation has been developed. It was found that by adding multi-derivative terms, the stability of a linear multi-step method can be improved and the interval of periodicity of this new method is larger than that of the Numerov's method. The numerical test shows that the new method is superior to the previous lower orders in both accuracy and efficiency and it is specially applied to the problem when an increasing accuracy is requested.


2002 ◽  
Vol 12 (03n04) ◽  
pp. 341-358
Author(s):  
KRISHNA M. KAVI ◽  
DINESH P. MEHTA

This paper presents two algorithms for mutual exclusion on optical bus architectures including the folded one-dimensional bus, the one-dimensional array with pipelined buses (1D APPB), and the two-dimensional array with pipelined buses (2D APPB). The first algorithm guarantees mutual exclusion, while the second guarantees both mutual exclusion and fairness. Both algorithms exploit the predictability of propagation delays in optical buses.


2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


Sign in / Sign up

Export Citation Format

Share Document