On: “Gravity Interpretation using the Fourier Integral” by J. W. Berg, Jr., and M. E. Odegard (GEOPHYSICS, vol. 30, no. 3, p. 424–438, June 1965)

Geophysics ◽  
1970 ◽  
Vol 35 (2) ◽  
pp. 358-358 ◽  
Author(s):  
H. A. Meinardus

The authors do not state explicitly that equations (1) and (12) express gravity anomalies of the two‐dimensional cylinder and fault respectively. These structures have an infinite extension along the strike, and all the gravity profiles perpendicular to the strike are identical. For this reason it is admissible to apply the one‐dimensional Fourier transform to obtain the one‐dimensional amplitude spectra shown in Figures (1) and (5). The situation, however, is different for the sphere, which does not have a one‐dimensional gravity profile in the above sense, but rather a two‐dimensional field with cylindrical symmetry. Instead of using the one‐dimensional Fourier transform as given by (6) along a straight line, we must apply the two‐dimensional Fourier transform over the whole area. Because of the circular symmetry, one radial variable will suffice in place of the two Cartesian coordinates x and y, and the two‐dimensional Fourier transform can be expressed as Hankel transform, so that equation (6) becomes [Formula: see text]

Geophysics ◽  
1965 ◽  
Vol 30 (2) ◽  
pp. 228-233 ◽  
Author(s):  
Charles E. Corbató

A procedure suitable for use on high‐speed digital computers is presented for interpreting two‐dimensional gravity anomalies. In order to determine the shape of a disturbing mass with known density contrast, an initial model is assumed and gravity anomalies are calculated and compared with observed values at n points, where n is greater than the number of unknown variables (e.g. depths) of the model. Adjustments are then made to the model by a least‐squares approximation which uses the partial derivatives of the anomalies so that the residuals are reduced to a minimum. In comparison with other iterative techniques, convergence is very rapid. A convenient method to use for both the calculation of the anomalies and the adjustments is the two‐dimensional method of Talwani, Worzel, and Landisman, (1959) in which the outline of the body is polygonized and the anomalies and the partial derivatives of the anomaly with respect to the depth of a vertex on the body can be expressed as functions of the coordinates of the vertex. Not only depths but under certain circumstances regional gravity values may be evaluated; however, the relationship of the disturbing body to the gravity information may impose certain limitations on the application of the procedure.


Geophysics ◽  
1975 ◽  
Vol 40 (2) ◽  
pp. 356-357
Author(s):  
Jay Gopal Saha

In their paper, Odegard and Berg claim that from the gravity anomaly due to a two‐dimensional vertical fault the density, the throw, and the depth can be determined uniquely by a Fourier transform method. It is true that the solution of the reverse problem for a two‐dimensional vertical step is theoretically unique. The derivation of the Fourier transform by the authors, however, is erroneous.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1108 ◽  
Author(s):  
Ivanna Dronyuk ◽  
Olga Fedevych ◽  
Natalia Kryvinska

We develop in this paper a method for constructing a digital watermark to protect one-dimensional and two-dimensional signals. The creation of a digital watermark is based on the one-dimensional and two-dimensional generalized Fourier and Hartley transformations and the Ateb-functions as a generalization of trigonometric functions. The embedding of the digital watermark is realized in the frequency domain. The simulation of attacks on protected files is carried out to confirm the stability of the proposed method. Experiments proved the high stability of the developed method conformably to the main types of attacks. An additional built-in digital watermark can be used to identify protected files. The proposed method can be used to support the security of a variety of signals—audio, images, electronic files etc.—to protect them from unauthorized access and as well for identification.


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


2002 ◽  
Vol 12 (03n04) ◽  
pp. 341-358
Author(s):  
KRISHNA M. KAVI ◽  
DINESH P. MEHTA

This paper presents two algorithms for mutual exclusion on optical bus architectures including the folded one-dimensional bus, the one-dimensional array with pipelined buses (1D APPB), and the two-dimensional array with pipelined buses (2D APPB). The first algorithm guarantees mutual exclusion, while the second guarantees both mutual exclusion and fairness. Both algorithms exploit the predictability of propagation delays in optical buses.


2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


Author(s):  
Bharti bharti ◽  
Debabrata Deb

We use molecular dynamics simulations to investigate the ordering phenomena in two-dimensional (2D) liquid crystals over the one-dimensional periodic substrate (1DPS). We have used Gay-Berne (GB) potential to model the...


2013 ◽  
Vol 33 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Alberto Colombo ◽  
Lívia A. Alvarenga ◽  
Myriane S. Scalco ◽  
Randal C. Ribeiro ◽  
Giselle F. Abreu

The increasing demand for water resources accentuates the need to reduce water waste through a more appropriate irrigation management. In the particular case of irrigated coffee planting, which in recent years presented growth with the predominance of drip irrigation, the improvement of drip irrigation management techniques is a necessity. The proper management of drip irrigation depends on the knowledge of the spatial pattern of soil moisture distribution inside the wetted strip formed under the irrigation lines. In this study, grids of 24 tensiometers were used to determine the water storage within the wetted strip formed under drippers, with a 3.78 L h-1 discharge, evenly spaced by 0.4 m, subjected to two different management criteria (fixed irrigation interval and 60 kPa tension). Estimates of storage based on a one-dimensional analysis, that only considers depth variations, were compared with two-dimensional estimates. The results indicate that for high-frequency irrigation the one-dimensional analysis is not appropriate. However, under less frequent irrigation, the two-dimensional analysis is dispensable, being the one-dimensional sufficient for calculating the water volume stored in the wetted strip.


Sign in / Sign up

Export Citation Format

Share Document