scholarly journals Packet Preprocessing in CNN-Based Network Intrusion Detection System

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1151 ◽  
Author(s):  
Wooyeon Jo ◽  
Sungjin Kim ◽  
Changhoon Lee ◽  
Taeshik Shon

The proliferation of various connected platforms, including Internet of things, industrial control systems (ICSs), connected cars, and in-vehicle networks, has resulted in the simultaneous use of multiple protocols and devices. Chaotic situations caused by the usage of different protocols and various types of devices, such as heterogeneous networks, implemented differently by vendors renders the adoption of a flexible security solution difficult, such as recent deep learning-based intrusion detection system (IDS) studies. These studies optimized the deep learning model for their environment to improve performance, but the basic principle of the deep learning model used was not changed, so this can be called a next-generation IDS with a model that has little or no requirements. Some studies proposed IDS based on unsupervised learning technology that does not require labeled data. However, not using available assets, such as network packet data, is a waste of resources. If the security solution considers the role and importance of the devices constituting the network and the security area of the protocol standard by experts, the assets can be well used, but it will no longer be flexible. Most deep learning model-based IDS studies used recurrent neural network (RNN), which is a supervised learning model, because the characteristics of the RNN model, especially when the long-short term memory (LSTM) is incorporated, are better configured to reflect the flow of the packet data stream over time, and thus perform better than other supervised learning models such as convolutional neural network (CNN). However, if the input data induce the CNN’s kernel to sufficiently reflect the network characteristics through proper preprocessing, it could perform better than other deep learning models in the network IDS. Hence, we propose the first preprocessing method, called “direct”, for network IDS that can use the characteristics of the kernel by using the minimum protocol information, field size, and offset. In addition to direct, we propose two more preprocessing techniques called “weighted” and “compressed”. Each requires additional network information; therefore, direct conversion was compared with related studies. Including direct, the proposed preprocessing methods are based on field-to-pixel philosophy, which can reflect the advantages of CNN by extracting the convolutional features of each pixel. Direct is the most intuitive method of applying field-to-pixel conversion to reflect an image’s convolutional characteristics in the CNN. Weighted and compressed are conversion methods used to evaluate the direct method. Consequently, the IDS constructed using a CNN with the proposed direct preprocessing method demonstrated meaningful performance in the NSL-KDD dataset.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Abdelouahid Derhab ◽  
Arwa Aldweesh ◽  
Ahmed Z. Emam ◽  
Farrukh Aslam Khan

In the era of the Internet of Things (IoT), connected objects produce an enormous amount of data traffic that feed big data analytics, which could be used in discovering unseen patterns and identifying anomalous traffic. In this paper, we identify five key design principles that should be considered when developing a deep learning-based intrusion detection system (IDS) for the IoT. Based on these principles, we design and implement Temporal Convolution Neural Network (TCNN), a deep learning framework for intrusion detection systems in IoT, which combines Convolution Neural Network (CNN) with causal convolution. TCNN is combined with Synthetic Minority Oversampling Technique-Nominal Continuous (SMOTE-NC) to handle unbalanced dataset. It is also combined with efficient feature engineering techniques, which consist of feature space reduction and feature transformation. TCNN is evaluated on Bot-IoT dataset and compared with two common machine learning algorithms, i.e., Logistic Regression (LR) and Random Forest (RF), and two deep learning techniques, i.e., LSTM and CNN. Experimental results show that TCNN achieves a good trade-off between effectiveness and efficiency. It outperforms the state-of-the-art deep learning IDSs that are tested on Bot-IoT dataset and records an accuracy of 99.9986% for multiclass traffic detection, and shows a very close performance to CNN with respect to the training time.


2021 ◽  
Vol 7 ◽  
pp. e721
Author(s):  
Abdullah Aljumah

In the Information and Communication Technology age, connected objects generate massive amounts of data traffic, which enables data analysis to uncover previously hidden trends and detect unusual network-load. We identify five core design principles to consider when designing a deep learning-empowered intrusion detection system (IDS). We proposed the Temporal Convolution Neural Network (TCNN), an intelligent model for IoT-IDS that aggregates convolution neural network (CNN) and generic convolution, based on these concepts. To handle unbalanced datasets, TCNN is accumulated with synthetic minority oversampling technique with nominal continuity. It is also used in conjunction with effective feature engineering techniques like attribute transformation and reduction. The presented model is compared to two traditional machine learning algorithms, random forest (RF) and logistic regression (LR), as well as LSTM and CNN deep learning techniques, using the Bot-IoT data repository. The outcomes of the experiments depicts that TCNN maintains a strong balance of efficacy and performance. It is better as compared to other deep learning IDSs, with a multi-class traffic detection accuracy of 99.9986 percent and a training period that is very close to CNN.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2021 ◽  
pp. 102177
Author(s):  
ZHENDONG WANG ◽  
YAODI LIU ◽  
DAOJING HE ◽  
SAMMY CHAN

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 344
Author(s):  
Jeyaprakash Hemalatha ◽  
S. Abijah Roseline ◽  
Subbiah Geetha ◽  
Seifedine Kadry ◽  
Robertas Damaševičius

Recently, there has been a huge rise in malware growth, which creates a significant security threat to organizations and individuals. Despite the incessant efforts of cybersecurity research to defend against malware threats, malware developers discover new ways to evade these defense techniques. Traditional static and dynamic analysis methods are ineffective in identifying new malware and pose high overhead in terms of memory and time. Typical machine learning approaches that train a classifier based on handcrafted features are also not sufficiently potent against these evasive techniques and require more efforts due to feature-engineering. Recent malware detectors indicate performance degradation due to class imbalance in malware datasets. To resolve these challenges, this work adopts a visualization-based method, where malware binaries are depicted as two-dimensional images and classified by a deep learning model. We propose an efficient malware detection system based on deep learning. The system uses a reweighted class-balanced loss function in the final classification layer of the DenseNet model to achieve significant performance improvements in classifying malware by handling imbalanced data issues. Comprehensive experiments performed on four benchmark malware datasets show that the proposed approach can detect new malware samples with higher accuracy (98.23% for the Malimg dataset, 98.46% for the BIG 2015 dataset, 98.21% for the MaleVis dataset, and 89.48% for the unseen Malicia dataset) and reduced false-positive rates when compared with conventional malware mitigation techniques while maintaining low computational time. The proposed malware detection solution is also reliable and effective against obfuscation attacks.


Author(s):  
Hsu-Heng Yen ◽  
Ping-Yu Wu ◽  
Pei-Yuan Su ◽  
Chia-Wei Yang ◽  
Yang-Yuan Chen ◽  
...  

Abstract Purpose Management of peptic ulcer bleeding is clinically challenging. Accurate characterization of the bleeding during endoscopy is key for endoscopic therapy. This study aimed to assess whether a deep learning model can aid in the classification of bleeding peptic ulcer disease. Methods Endoscopic still images of patients (n = 1694) with peptic ulcer bleeding for the last 5 years were retrieved and reviewed. Overall, 2289 images were collected for deep learning model training, and 449 images were validated for the performance test. Two expert endoscopists classified the images into different classes based on their appearance. Four deep learning models, including Mobile Net V2, VGG16, Inception V4, and ResNet50, were proposed and pre-trained by ImageNet with the established convolutional neural network algorithm. A comparison of the endoscopists and trained deep learning model was performed to evaluate the model’s performance on a dataset of 449 testing images. Results The results first presented the performance comparisons of four deep learning models. The Mobile Net V2 presented the optimal performance of the proposal models. The Mobile Net V2 was chosen for further comparing the performance with the diagnostic results obtained by one senior and one novice endoscopists. The sensitivity and specificity were acceptable for the prediction of “normal” lesions in both 3-class and 4-class classifications. For the 3-class category, the sensitivity and specificity were 94.83% and 92.36%, respectively. For the 4-class category, the sensitivity and specificity were 95.40% and 92.70%, respectively. The interobserver agreement of the testing dataset of the model was moderate to substantial with the senior endoscopist. The accuracy of the determination of endoscopic therapy required and high-risk endoscopic therapy of the deep learning model was higher than that of the novice endoscopist. Conclusions In this study, the deep learning model performed better than inexperienced endoscopists. Further improvement of the model may aid in clinical decision-making during clinical practice, especially for trainee endoscopist.


Sign in / Sign up

Export Citation Format

Share Document