scholarly journals A Non-WSSUS Channel Simulator for V2X Communication Systems

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1190
Author(s):  
José Jimmy Jaime-Rodríguez ◽  
Carlos Antonio Gómez-Vega ◽  
Carlos A. Gutiérrez ◽  
José Martín Luna-Rivera ◽  
Daniel Ulises Campos-Delgado ◽  
...  

This paper presents a simulator of non-wide sense stationary uncorrelated scattering (non-WSSUS) multipath fading channels for the performance analysis of vehicle-to-everything (V2X) communication systems. The proposed simulator is constructed with the combination of the Monte Carlo and sum-of-cisoids (SOC) principles, and it is suitable for multicarrier transmission schemes such as those defined for dedicated short-range communications (DSRC) and cellular-based V2X (C-V2X) communications. The channel simulator provides an accurate and flexible solution to reproduce the time and frequency (TF) correlation properties of non-WSSUS vehicular channels under arbitrary isotropic and non-isotropic scattering conditions. Furthermore, the proposed simulator allows velocity variations and non-linear trajectories of the mobile stations (MSs). To demonstrate the practical value of the presented simulator, we evaluate the bit error rate (BER) performance of two channel estimation techniques that are considered for IEEE 802.11p transceivers, namely the least squares (LS) estimator and the spectral temporal averaging (STA) technique. The BER performance of both channel estimators was analyzed by considering three propagating scenarios for road safety applications. Our results show that the non-stationary characteristics of the vehicular multipath fading channel have nearly no effects on the LS estimator’s BER performance. In contrast, the performance of the STA estimator is significantly affected by the channel’s non-stationary characteristics. A variation of the original STA technique that applies only a temporal averaging is introduced in this work to improve the system’s BER in non-WSSUS channels.


1992 ◽  
Vol 28 (17) ◽  
pp. 1618
Author(s):  
K. Wuyts ◽  
M. Moeneclaey


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Carlos A. Gutiérrez ◽  
J. J. Jaime-Rodríguez ◽  
J. M. Luna-Rivera ◽  
Daniel U. Campos-Delgado ◽  
Javier Vázquez Castillo

This paper deals with the modeling of nonstationary time-frequency (TF) dispersive multipath fading channels for vehicle-to-vehicle (V2V) communication systems. As a main contribution, the paper presents a novel geometry-based statistical channel model that facilitates the analysis of the nonstationarities of V2V fading channels arising at a small-scale level due to the time-varying nature of the propagation delays. This new geometrical channel model has been formulated following the principles of plane wave propagation (PWP) and assuming that the transmitted signal reaches the receiver antenna through double interactions with multiple interfering objects (IOs) randomly located in the propagation area. As a consequence of such interactions, the first-order statistics of the channel model’s envelope are shown to follow a worse-than-Rayleigh distribution; specifically, they follow a double-Rayleigh distribution. General expressions are derived for the envelope and phase distributions, four-dimensional (4D) TF correlation function (TF-CF), and TF-dependent delay and Doppler profiles of the proposed channel model. Such expressions are valid regardless of the underlying geometry of the propagation area. Furthermore, a closed-form solution of the 4D TF-CF is presented for the particular case of the geometrical two-ring scattering model. The obtained results provide new theoretical insights into the correlation and spectral properties of small-scale nonstationary V2V double-Rayleigh fading channels.



2017 ◽  
Vol 27 (02) ◽  
pp. 1750025 ◽  
Author(s):  
J. Y. Duan ◽  
G. P. Jiang ◽  
H. Yang

In Correlation-Delay-Shift-Keying (CDSK), the reference signal and the information-bearing signal are added together during a certain time delay. Because the reference signal is not strictly orthogonal to the information-bearing signal, the cross-correlation between the adjacent chaotic signal (Intra-signal Interference, ISI) will be introduced into the demodulation at the receiver. Therefore, the Bit-Error Ratio (BER) of CDSK is higher than that of Differential-Chaos-Shift-Keying (DCSK). To avoid the ISI component and enhance the BER performance of CDSK in multiuser scenario, Multiple-Access CDSK with No Intra-signal Interference (MA-CDSK-NII) is proposed. By constructing the repeated chaotic generator and applying the Walsh code sequence to modulate the reference signal, in MA-CDSK-NII, the ISI component will be eliminated during the demodulation. Gaussian approximation method is adopted here to obtain the exact performance analysis of MA-CDSK-NII over additive white Gaussian noise (AWGN) channel and Rayleigh multipath fading channels. Results show that, due to no ISI component and lower transmitting power, the BER performance of MA-CDSK-NII can be better than that of multiple-access CDSK and Code-Shifted Differential-Chaos-Shift-Keying (CS-DCSK).



2021 ◽  
Vol 1 (1) ◽  
pp. 19-25
Author(s):  
Filbert H. Juwono ◽  
Regina Reine

The vision towards 6G and beyond communication systems demands higher rate transmission, massive amount of data processing, and low latency communication. Orthogonal Frequency Division Modulation (OFDM) has been adopted in the current 5G networks and has become one of the potential candidates for the future communication systems. Although OFDM offers many benefits including high spectrum efficiency and high robustness against the multipath fading channels, it has major challenges such as frequency offset and high Peak to Power Ratio (PAPR). In 5G communication network, there is a significant increase in the number of sensors and other low-power devices where users or devices may create large amount of connection and dynamic data processing. In order to deal with the increasingly complex communication network, Machine Learning (ML) has been increasingly utilised to create intelligent and more efficient communication network. This paper discusses challenges and the impacts of embedding ML in OFDM-based communication systems.



2021 ◽  
Vol 25 (Special) ◽  
pp. 1-26-1-33
Author(s):  
Hassan F. Mohammed ◽  
◽  
Ghanim A. Al-Rubaye ◽  

Multicarrier transmission, also known as (OFDM) Orthogonal Frequency Division multiplexing, in wireless communications, it has been proven to be an essential technique for countering multipath fading. It has been used successfully for HF radio applications and has been selected as the interface for digital audio transmission, digital terrestrial TV broadcasting, and high-speed wireless local area networks in Europe. In this paper, we suggested a new design for modeling multipath fading channels, such as the Laplace fading channel, in order to discover new simulation results and effects. Furthermore, the variance of the Laplace fading channel has been computed and the new Bit Error Rate (BER) derivation is established, and the performance of (M-QAM), M-ary Quadrature Amplitude Modulation (with M=4 over OFDM system under Laplace fading channels in Additive White Gaussian Noise (AWGN) is discussed and compared to the conventional M-QAM/OFDM system Rayleigh fading channel in AWGN. All the simulation results are examined using the optimum signal detection based on the Euclidean distance and evaluated using Monte-Carlo simulation.



2005 ◽  
Vol 15 (12) ◽  
pp. 4027-4033 ◽  
Author(s):  
YONGXIANG XIA ◽  
CHI K. TSE ◽  
FRANCIS C. M. LAU ◽  
GÉZA KOLUMBÁN

Multipath performance is an important consideration for chaos-based communication systems. In this letter, the performance of the FM-DCSK communication system over multipath fading channels is evaluated by computer simulations. Both Rayleigh fading and Ricean fading are considered, and the low-pass equivalent model of the FM-DCSK system is used in the simulation. Based on this model, we analyze the bit error performance of the system and the effects of system parameters on the bit-error performance.



Sign in / Sign up

Export Citation Format

Share Document