scholarly journals Analysis of Non-Isolated Multi-Port Single Ended Primary Inductor Converter for Standalone Applications

Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 539 ◽  
Author(s):  
C. Anuradha ◽  
C. Sakthivel ◽  
T. Venkatesan ◽  
N. Chellammal

A non-isolated Multiport Single Ended Primary Inductor Converter (SEPIC) for coordinating photovoltaic sources is developed in this paper. The proposed multiport converter topologies comprise a Single Input Multi yield (SIMO) and Multi Input Multi Output (MIMO). It is having the merits of decreased number of parts and high power density. Steady state analysis verifies the improved situation of both the proposed topologies, which is further checked through simulation results.

2017 ◽  
Vol 139 (11) ◽  
Author(s):  
A. Putz ◽  
S. Staudacher ◽  
C. Koch ◽  
T. Brandes

Current engine condition monitoring (ECM) systems for jet engines include the analysis of on-wing gas path data using steady-state performance models. Such data, which are also referred to as performance snapshots, usually are taken during cruise flight and during takeoff. Using steady-state analysis, it is assumed that these snapshots have been taken under stabilized operating conditions. However, this assumption is reasonable only for cruise snapshots. During takeoff, jet engines operate in highly transient conditions with significant heat transfer occurring between the fluid and the engine structure. Hence, steady-state analysis of takeoff snapshots is subject to high uncertainty. Because of this, takeoff snapshots are not used for performance analysis in current ECM systems. We quantify the analysis uncertainty by transient simulation of a generic takeoff maneuver using a performance model of a medium size two-shaft turbofan engine with high bypass ratio. Taking into account the influence of the preceding operating regimes on the transient heat transfer effects, this takeoff maneuver is extended backward in time to cover the aircraft turnaround as well as the end of the last flight mission. We present a hybrid approach for thermal calculation of both the fired engine and the shutdown engine. The simulation results show that takeoff derate, ambient temperature, taxi-out (XO) duration and the duration of the preceding aircraft turnaround have a major influence on the transient effects occurring during takeoff. The analysis uncertainty caused by the transient effects is significant. Based on the simulation results, we propose a method for correction of takeoff snapshots to steady-state operating conditions. Furthermore, we show that the simultaneous analysis of cruise and corrected takeoff snapshots leads to significant improvements in observability.


1981 ◽  
pp. 989-992
Author(s):  
E.B. Deksnis ◽  
H. Frankle ◽  
J.L. Hemmerich ◽  
P.H. Kupschus ◽  
C.N. Meixner

2022 ◽  
Author(s):  
Jonathan E Menard ◽  
Brian A Grierson ◽  
Thomas G Brown ◽  
Chirag Rana ◽  
Yuhu Zhai ◽  
...  

Abstract Recent U.S. fusion development strategy reports all recommend that the U.S. should pursue innovative science and technology to enable construction of a Fusion Pilot Plant (FPP) that produces net electricity from fusion at low capital cost. Compact tokamaks have been proposed as a means of potentially reducing the capital cost of a fusion pilot plant. However, compact steady-state tokamak FPPs face the challenge of integrating a high fraction of self-driven current with high core confinement, plasma pressure, and high divertor parallel heat flux. This integration is sufficiently challenging that a dedicated sustained-high-power-density (SHPD) tokamak facility is proposed by the U.S. community as the optimal way to close this integration gap. Performance projections for the steady-state tokamak FPP regime are presented and a preliminary SHPD device with substantial flexibility in lower aspect ratio (A=2-2.5), shaping, and divertor configuration to narrow gaps to a FPP is described.


2013 ◽  
Vol 328 ◽  
pp. 547-551
Author(s):  
Hai Sheng Feng ◽  
Li Qin Wang ◽  
De Zhi Zheng ◽  
Le Gu

Recently, most of researchers pay more attention to the flexible model for solving dynamic contact force in high power density gear transmission. But, the detailed formula of the contact force parameters is not given. Therefore, in this paper the detailed calculation of coefficient of restitution (COR) is proposed, which can solve the elastoplastic contact deformation problems compared with other method. To improve the simulation efficiency, a flexible model based on ADAMS and Hertzian theory is presented. According to the simulation results, the normal contact force of the flexible model is much higher than that of the rigid model in plastic contact deformation. Meanwhile, the normal contact force delay exists in flexible model compared with rigid model. At last, the flexible model simulation results are close to the theoretical result in steady state. Consequently, the flexible model can be applied to analyze dynamic characteristic in reasonable time and many revolutions of the high power density gear transmission.


Sign in / Sign up

Export Citation Format

Share Document