Analysis on Dynamic Contact Force in High Power Density Gear Transmission Based on Flexible Model

2013 ◽  
Vol 328 ◽  
pp. 547-551
Author(s):  
Hai Sheng Feng ◽  
Li Qin Wang ◽  
De Zhi Zheng ◽  
Le Gu

Recently, most of researchers pay more attention to the flexible model for solving dynamic contact force in high power density gear transmission. But, the detailed formula of the contact force parameters is not given. Therefore, in this paper the detailed calculation of coefficient of restitution (COR) is proposed, which can solve the elastoplastic contact deformation problems compared with other method. To improve the simulation efficiency, a flexible model based on ADAMS and Hertzian theory is presented. According to the simulation results, the normal contact force of the flexible model is much higher than that of the rigid model in plastic contact deformation. Meanwhile, the normal contact force delay exists in flexible model compared with rigid model. At last, the flexible model simulation results are close to the theoretical result in steady state. Consequently, the flexible model can be applied to analyze dynamic characteristic in reasonable time and many revolutions of the high power density gear transmission.

Author(s):  
Cheng Wang

Planetary gear transmission system has been widely used in the field of aerospace equipment, automobiles, ships, etc. High power density design is an important development direction for transmission machinery, but there is a lack of systematic and deepening research in planetary gear transmission system field. Taken the most widely used 2K–H-type planetary gear transmission system as research object, a design method of high power density considering volume and efficiency is put forward. First, the transmission efficiency model of 2K–H-type planetary gear transmission system is built on the basis of calculation of single gear pair meshing efficiency instead of the look-up table method. Second, the volume model of 2K–H-type planetary gear transmission system is built according to the structure of gear. Finally, the smallest volume and the minimum power loss of 2K–H-type planetary gear transmission system are the target of optimization, and the linear-weighted combination method is used to construct target function. Taken a 2K–H-type planetary gear reducer in some machine tool as an example, the optimization is carried out. The results show that the power loss of optimized system is reduced by 11.42%, and the volume of system is reduced by 25.2%.


Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 539 ◽  
Author(s):  
C. Anuradha ◽  
C. Sakthivel ◽  
T. Venkatesan ◽  
N. Chellammal

A non-isolated Multiport Single Ended Primary Inductor Converter (SEPIC) for coordinating photovoltaic sources is developed in this paper. The proposed multiport converter topologies comprise a Single Input Multi yield (SIMO) and Multi Input Multi Output (MIMO). It is having the merits of decreased number of parts and high power density. Steady state analysis verifies the improved situation of both the proposed topologies, which is further checked through simulation results.


Author(s):  
Andreas Patschger ◽  
Markus Franz ◽  
Jens Bliedtner ◽  
Jean Pierre Bergmann

2001 ◽  
Vol 37 (9) ◽  
pp. 597
Author(s):  
H.C. Chiu ◽  
S.C. Yang ◽  
F.T. Chien ◽  
Y.J. Chan

2021 ◽  
Vol 31 (5) ◽  
pp. 1-5
Author(s):  
Uijong Bong ◽  
Chaemin Im ◽  
Jonghoon Yoon ◽  
Soobin An ◽  
Seok-Won Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document