HIGH POWER-DENSITY STEADY-STATE HEAT SINKS

1981 ◽  
pp. 989-992
Author(s):  
E.B. Deksnis ◽  
H. Frankle ◽  
J.L. Hemmerich ◽  
P.H. Kupschus ◽  
C.N. Meixner
2021 ◽  
Author(s):  
Naga Ramesh Korasikha ◽  
Thopudurthi Karthikeya Sharma ◽  
Gadale Amba Prasad Rao ◽  
Kotha Madhu Murthy

Thermal management of electronic equipment is the primary concern in the electronic industry. Miniaturization and high power density of modern electronic components in the energy systems and electronic devices with high power density demanded compact heat exchangers with large heat dissipating capacity. Microchannel heat sinks (MCHS) are the most suitable heat exchanging devices for electronic cooling applications with high compactness. The heat transfer enhancement of the microchannel heat sinks (MCHS) is the most focused research area. Huge research has been done on the thermal and hydraulic performance enhancement of the microchannel heat sinks. This chapter’s focus is on advanced heat transfer enhancement methods used in the recent studies for the MCHS. The present chapter gives information about the performance enhancement MCHS with geometry modifications, Jet impingement, Phase changing materials (PCM), Nanofluids as a working fluid, Flow boiling, slug flow, and magneto-hydrodynamics (MHD).


2022 ◽  
Author(s):  
Jonathan E Menard ◽  
Brian A Grierson ◽  
Thomas G Brown ◽  
Chirag Rana ◽  
Yuhu Zhai ◽  
...  

Abstract Recent U.S. fusion development strategy reports all recommend that the U.S. should pursue innovative science and technology to enable construction of a Fusion Pilot Plant (FPP) that produces net electricity from fusion at low capital cost. Compact tokamaks have been proposed as a means of potentially reducing the capital cost of a fusion pilot plant. However, compact steady-state tokamak FPPs face the challenge of integrating a high fraction of self-driven current with high core confinement, plasma pressure, and high divertor parallel heat flux. This integration is sufficiently challenging that a dedicated sustained-high-power-density (SHPD) tokamak facility is proposed by the U.S. community as the optimal way to close this integration gap. Performance projections for the steady-state tokamak FPP regime are presented and a preliminary SHPD device with substantial flexibility in lower aspect ratio (A=2-2.5), shaping, and divertor configuration to narrow gaps to a FPP is described.


Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 539 ◽  
Author(s):  
C. Anuradha ◽  
C. Sakthivel ◽  
T. Venkatesan ◽  
N. Chellammal

A non-isolated Multiport Single Ended Primary Inductor Converter (SEPIC) for coordinating photovoltaic sources is developed in this paper. The proposed multiport converter topologies comprise a Single Input Multi yield (SIMO) and Multi Input Multi Output (MIMO). It is having the merits of decreased number of parts and high power density. Steady state analysis verifies the improved situation of both the proposed topologies, which is further checked through simulation results.


1989 ◽  
Vol 25 (9) ◽  
pp. 1988-1992 ◽  
Author(s):  
L.J. Missaggia ◽  
J.N. Walpole ◽  
Z.L. Liau ◽  
R.J. Phillips

Sign in / Sign up

Export Citation Format

Share Document