scholarly journals Performance Evaluation of Mesophilic Anaerobic Digestion of Chicken Manure with Algal Digestate

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1829 ◽  
Author(s):  
Na Duan ◽  
Xia Ran ◽  
Ruirui Li ◽  
Panagiotis Kougias ◽  
Yuanhui Zhang ◽  
...  

Dilution is considered to be a fast and easily applicable pretreatment for anaerobic digestion (AD) of chicken manure (CM), however, dilution with fresh water is uneconomical because of the water consumption. The present investigation was targeted at evaluating the feasibility and process performance of AD of CM diluted with algal digestate water (AW) for methane production to replace tap water (TW). Moreover, the kinetics parameters and mass flow of the AD process were also comparatively analyzed. The highest methane production of diluted CM (104.39 mL/g volatile solid (VS)) was achieved with AW under a substrate concentration of 8% total solid (TS). The result was markedly higher in comparison with the group with TW (79.54–93.82 mL/gVS). Apart from the methane production, considering its energy and resource saving, nearly 20% of TW replaced by AW, it was promising substitution to use AW for TW to dilute CM. However, the process was susceptible to substrate concentration, inoculum, as well as total ammonia and free ammonia concentration.

2020 ◽  
Vol 14 (4) ◽  
pp. 551-557
Author(s):  
Yongku Li ◽  
Xiaomin Hu ◽  
Lei Feng

The changing parameters, as the biogas production rate, the methane production rate, the cumulative biogas amount, the cumulative methane amount, the biogas composition, pH etc. in high temperature anaerobic fermentation of chicken manure and stalks were analyzed by experiments with different mass ratios of chicken manure or livestock manure and stalks with a high C/N ratio. The methane production mechanism of high temperature anaerobic digestion of chicken manure and stalks was discussed in detail. It showed that not only the biogas production rates but also the methane production rates of R1–R7 demonstrated the trend of initial increase and then decrease after 50 d of high temperature anaerobic digestion. Besides, the gas production of R1 with pure chicken manure stopped on the 30th d of the reaction. The gas production of other groups R2–R7 also stopped on the corresponding 34th, 36th, 36th, 37th, 37th, and 37th day, respectively. At the end of the reaction, the cumulative biogas amounts and the cumulative methane amounts of R1–R7 were 411.58 and 269.54, 459.91 and 314.41, 425.32 and 294.11, 401.85 and 272.54, 382.63 and 257.07, 363.04 and 218.16, and 257.15 and 160.10 N ml/(g VS). The biogas slurry pH of R1–R7 all demonstrated a trend of initial decrease and then increase, e. g., pH of R2 reached the minimum of 5.94 on the 5th day. pH values of other groups were between 6.01 and 6.39. After the addition of 4 g of sodium bicarbonate on the 7th day, biogas slurry pH of R1–R7 all increased. pH was maintained between 7.16 and 7.44 until the end of the reaction.


Author(s):  
Ana d’Espiney ◽  
Isabel Paula Marques ◽  
Helena Maria Pinheiro

The present case study deals with new pathways in demand for forest residues disposal in the Lafões region (Portugal), since this biomass is presently regarded as a residue and eliminated through open air burning. Different biomass-to-energy conversion systems have a high sustainability value and, thus, the energy potential of the biomass supplied by the forest of Lafões was assessed, using GIS-based methods and assumptions from the literature. The Lafões region produces large amounts of chicken manure from which energy can be recovered through anaerobic digestion. The energy potential held by the effluent of the several classes of the poultry industry of Lafões was assessed, using IPCC 2006 guidelines to estimate their biomass and methane production potential. Furthermore, integrated solutions were pursued. The present challenge is to explore complementarities between effluents for anaerobic digestion to achieve improved energy and waste management system performances. The complementarity between the residues from maritime pine forest management and from broiler production was assessed through bench-scale anaerobic co-digestion assays, leading to increased methane production when compared to those achieved with single substrate anaerobic digestion. This result highlights the interest of further research concerning complementarities between other effluents in the Lafões region.


Author(s):  
Fatma Abouelenien ◽  
Toyokazu Miura ◽  
Yutaka Nakashimada ◽  
Nooran S. Elleboudy ◽  
Mohammad S. Al-Harbi ◽  
...  

In this study, marine sediment (MS) was successfully used as a source of methanogenic bacteria for the anaerobic digestion (AD) of chicken manure (CM). Using MS showed high production in liquid and semi-solid conditions. Even in solid conditions, 169.3 mL/g volatile solids of chicken manure (VS-CM) was produced, despite the accumulation of ammonia (4.2 gNH3-N/kg CM). To the best of our knowledge, this is the highest methane production from CM alone, without pretreatment, in solid conditions (20%). Comparing MS to Ozouh sludge (excess activated sewage sludge) (OS), using OS under semi-solid conditions resulted in higher methane production, while using MS resulted in more ammonia tolerance (301 mL/gVS-CM at 8.58 gNH3-N/kg). Production optimization was carried out via a response surface methodology (RDM) model involving four independent variables (inoculum ratio, total solid content, NaCl concentration, and incubation time). Optimized methane production (324.36 mL/gVS-CM) was at a CM:MS ratio of 1:2.5 with no NaCl supplementation, 10% total solid content, and an incubation time of 45 days.


2019 ◽  
Vol 39 (3) ◽  
pp. 243 ◽  
Author(s):  
Gaweł Sołowski ◽  
Izabela Konkol ◽  
Bartosz Hrycak ◽  
Dariusz Czylkowski

In this article, the results of key lime fruit (Citrus aurantifolia) wastes and cabbage (Brassica L.) wastes anaerobic digestion are presented. Anaerobic digestion of the wastes was performed in batch process, neutral pH (key-lime 7.47 and cabbage 7.67) and substrate concentration of Volatile Suspended Solids (VSS) 10 gVSS/L. One of the aims of this research was to check the availability of these substrates to be the source of methane and hydrogen. Key lime wastes produced 32 times more methane than raw cabbage. However, hydrogen production from cabbage was 149 times higher than key lime. The percentage of methane production in cabbage was up to 81% and in key lime was up to 75%. This research showed from the substrates comparison that efficient hydrogen production is less dependent on low pKa, pH than on total solids of the substrates.


2021 ◽  
pp. 100662
Author(s):  
Yafan Cai ◽  
Leandro Janke ◽  
Zehui Zheng ◽  
Xiaofen Wang ◽  
Jürgen Pröter ◽  
...  

2000 ◽  
Vol 41 (3) ◽  
pp. 119-127 ◽  
Author(s):  
S. Fujishima ◽  
T. Miyahara ◽  
T. Noike

The purpose of this study is to investigate the effect of moisture content on anaerobic digestion of dewatered sewage sludge under mesophilic condition. The moisture contents of sludge fed to reactors were 97.0%, 94.6%, 92.9%, 91.1% and 89.0%. The VS removal efficiency changed from 45.6% to 33.8%, as the moisture content of sludge fed to digester decreased from 97.0% to 89.0%. The carbohydrate removal efficiency also decreased from 71.1% to 27.8%. Methane production decreased when the moisture content of sludge was lower than 91.1%. The number of glucose consuming acidogenic bacteria was decreased from 3.1×106 to 3.1×108(MPN/mL) as the moisture content decreased from 91.1% to 89.0%. The numbers of hydrogenotrophic and acetoclastic methanogenic bacteria decreased by one order of magnitude when the moisture content was lower than 91.1%. The decrease in numbers of glucose consuming acidogenic bacteria and methanogenic bacteria was found to correspond to the decrease in the carbohydrate removal efficiency and the accumulation of propionic acid. Batch experiments showed that acetoclastic methanogenic bacteria were acclimated to high ammonia concentration, on the other hand, glucose consuming acidogenic bacteria were inhibited.


2020 ◽  
Vol 10 (21) ◽  
pp. 7825
Author(s):  
Yevhenii Shapovalov ◽  
Sergey Zhadan ◽  
Günther Bochmann ◽  
Anatoly Salyuk ◽  
Volodymyr Nykyforov

Providing anaerobic digestion is a prospective technology for utilizing organic waste, however, for waste with a high content of nitrogen such as manure, dilution is necessary to decrease the ammonia inhibition effect which leads to the production of a huge effluent amount which is difficult to use. Dry anaerobic digestion has some advantages such as reduced reactor volume, higher volumetric methane yield, lower energy consumption for heating, less wastewater production, and lower logistic costs for fertilizers. These factors generate interest in using it for treatment of even high-nitrogen substrates. The purpose of this work was to analyze different dry anaerobic digestion technologies, the features of dry anaerobic digestion, laboratory studies on chicken manure dry anaerobic digestion, and methods of reducing inhibitors’ effects. Nowadays, there are no dry anaerobic industrial plants working on chicken manure. However, studies on dry anaerobic digestion of chicken manure have proven the possibility of methane production under fermentation of chicken manure with high total solids content, but the process has been described as being unstable. Co-fermentation, ammonium/ammonia removal, and adaptation of the microbial consortium have been used to decrease the effect of ammonia inhibition. A prospective way for ammonia concentration control is absorption using a non-volatile sorbent located in the reactor. It decreases ammonia content during wet anaerobic digestion by 33% and it is characterized by having a positive economic effect. Therefore, dry anaerobic fermentation of chicken manure is possible, but there is still no efficient way to provide it. The results of this article should be helpful in the selection of anaerobic digestion technology for treating chicken manure.


2018 ◽  
Vol 7 (3) ◽  
Author(s):  
Fredynanta Saputra ◽  
Sutaryo Sutaryo ◽  
Agung Purnomoadi

Tujuan dari penelitian ini adalah untuk mengetahui pengaruh penggunaan ampas tahu sebagai co-substrat dalam digesti secara anaerob terhadap kecernaan protein, konsentrasi VFA dan total amonia nitrogen. Penelitian dilakukan dengan menggunakan dua buah digester kontinyu dan data dikoleksi selama tiga kali hydraulic retention time (HRT), dimana satu kali HRT setara dengan 25 hari. Data yang diperoleh dibahas dengan metode independent sampel comparison dengan membandingkan variabel hasil pengamatan dari digester satu (tanpa ampas tahu) dan digester dua (penambahan 5% ampas tahu) yang keduanya diencerkan menggunakan air dengan perbandingan 1:1. Hasil dari penelitian ini adalah terdapat adanya perbedaan yang nyata (P<0,05) dari perlakuan yang diterapkan terhadap kecernaan protein, konsentrasi VFA, dan konsentrasi total amonia nitrogen (TAN). Nilai kecernaan protein, konsentrasi VFA dan konsentrasi TAN dari digester 1 dan digester 2 secara berturut turut adalah 36,13% dan 25,71%; 25,39 ml/mol/l dan 11,21 ml/mol/l serta 1959 dan 1675 mg/l. Kesimpulan dari penelitian ini adalah konsentrasi VFA dan TAN yang stabil pada konsentrasi yang relatif rendah pada slurry dari digester 2 dipertengahan dan akhir penelitian mengindikasikan bahwa ampas tahu bisa digunakan sebagai co-subtrat pada feses sapi, namun demikian perlu dilakukan penelitian lebih lanjut untuk mengevaluasi level ampas tahu yang terbaik untuk meningkatkan produksi biogas dari digester biogas berbasis feses sapi.Utilization of Waste from Tofu as Co-Substrate in Biogas ProductionAbstractThe aim of this research was to evaluate the effect of co-substrate of waste of tofu in anaerobic digestion on protein digestibility, VFA concentration, and total ammonia nitrogen. The experiment was performed in two continuously feeding digesters for three hydraulic retention times (HRT) which was a HRT equal to 25 d. The observed data was analysed using independent sample comparison. The treatments were digester 1 as no co-substrat and digester 2 as 5% solid waste from tofu addition which both of them then diluted with tap water at 1:1 ratio. The results of this study showed that there were significant effect (P<0.05) of treatments on protein digestibility, VFA concentration and total ammonia nitrogen. The protein digestibility, VFA concentration and TAN concentration of digester 1 and digester 2 were 36.13 and 25.71%; 25.39 and 11.21 ml/mol/L; 1959 and 1675 mg/L, respectively. As conclusion, a stabil at low concentration of VFA and TAN in the middle and in the end experiment might be used to indicate that waste from tofu is suitable substrate for co-digestion with cow feses, however a further experiment is needed to obtain optimum level of tofu cake to enhance biogas production of digester biogas base on cow feses.•••


Sign in / Sign up

Export Citation Format

Share Document