scholarly journals Deformation, Permeability and Acoustic Emission Characteristics of Coal Masses under Mining-Induced Stress Paths

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2233 ◽  
Author(s):  
Yi Xue ◽  
Faning Dang ◽  
Zhengzheng Cao ◽  
Feng Du ◽  
Jie Ren ◽  
...  

The geomechanical and seepage evolution characteristics of coal masses during mining are the key factors that affect the drainage of coalbed methane and the safety of coal mining. Nevertheless, the influence of mining paths on coal seam permeability is rarely investigated given the complexity of mining-induced stress experiments. To study the effect of mining-induced stress on coal mining, the mechanical properties, acoustic emission characteristics and energy evolution of coal masses were experimentally evaluated through mining-induced stress experiments. Experimental results indicated that at peak intensity, the deviatoric stress and axial strain of coal samples under the stress path of protective coal-seam mining are lower than those of coal samples under the non-pillar stress path. The unloading ratio of confining pressure is large under a stress path of non-pillar mining, and the elastic energy, the absorbed energy, and the dissipated energy of coal mass are low during destruction. The effect of high confining pressure on AE events is pronounced under the non-pillar mining path. The overall b value under high confining pressure is smaller than that under low confining pressure, and AE events generally have high energy. The fracture structure of coal mass is complex, and the fractal size of coal is large under high unloading rates of confining pressure, which induce the increase of permeability after coal destruction.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yan Zhou ◽  
Chuanxiao Liu ◽  
Depeng Ma

In the study of the acoustic emission (AE) characteristics of rock samples or coal samples under triaxial compression conditions, most scholars carry out relevant experiments by placing the AE detector on the outer wall of the triaxial chamber of the rock mechanics test system. Owing to the continuous obstruction of AE signals by hydraulic oil in the triaxial chamber and the frequent interference of external noises, the final experimental data cannot objectively and truly reflect the essential characteristics of AE of rock or coal under triaxial compression conditions. It is difficult to scientifically guide and accurately predict precursory information of rock’s or coal’s rupture and instability. Based on this, a series of improvements and optimizations were made to the original triaxial compression AE test method, which is based on the modification of the communication interface of the rock mechanics test system, a test head which can put the AE detector into the triaxial chamber and withstands high confining pressure, in order to obtain the true, comprehensive, and reliable AE signals. It is of considerable significance to the scientific determination of the precursory characteristics of rock’s or coal’s rupture and instability.


2013 ◽  
Vol 423-426 ◽  
pp. 909-913
Author(s):  
Lan Qiang Yang ◽  
Shang Lin Qin ◽  
Hui Gao ◽  
Shan Xiong Chen

In order to study the acoustic emission characteristics of coarse aggregates, improved of large-scale triaxial apparatus is used to do the consolidated undrained triaxial tests of sericite schist coarse aggregates, with the acoustic emission signals monitoring. The test results show that a large number of AE signals of sericite schist coarse aggregates are generated in the initial stage. Before the axial strain reach 10%, AE counts are relatively quiet. But after 10%, they become anomalous and emerge obvious leap values. When the confining pressure up to 200kPa, AE signals are mainly generated by sliding friction. With confining pressure increasing, the proporation of rolling friction and particle breakage is more and more obvious.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Tao Qin ◽  
Yanwei Duan ◽  
Hongru Sun ◽  
Honglei Liu ◽  
Lei Wang

The acoustic emission characteristics of rock specimens under different initial unloading confining pressures were tested to obtain the damage and rupture characteristics of the sandstone unloading confining pressure path. The CT scan and three-dimensional reconstruction of the fractured rock specimens were carried out to study the differences of energy evolution and acoustic emission characteristics during the failure of sandstone under different initial unloading pressures. The results show that the unloading confining pressure has a significant influence on the deformation and failure of the rock. There is a significant yielding platform for the circumferential strain and the bulk strain at the peak of the unloading pressure. The larger the initial unloading pressure is, the greater the axial absorption strain energy, the dissipative energy, and the elastic strain energy are at the peak point. After the stress peak point, the elastic strain can be quickly converted into the dissipative energy for rock damage. The elastic energy released from the moment of rock failure under high confining pressure is more concentrated. The acoustic emission ringing and b value characteristic parameters of the rock have a good correlation with the internal energy evolution of the rock, which better reflects the progressive damage of the rock under low stress and the sudden failure of high-stress unloading.


1977 ◽  
Vol 67 (2) ◽  
pp. 247-258
Author(s):  
D. Lockner ◽  
J. Byerlee

Abstract Two samples each of Weber Sandstone and Westerly Granite were tested under triaxial compression at 1 kb confining pressure. Axial load was increased in steps, and the acoustic emission generated in the samples during primary creep was monitored. The rate v of acoustic emission events was found to decrease exponentially at each stress level, obeying the law log v = β − αN, where N is the total number of microseismic events that have occurred and α and β are constants. By assuming that acoustic emission is proportional to inelastic deformation, this relation can be compared to empirical creep laws. It is similar to the relation given by Lomnitz and fits the data more closely than other creep laws that were functions of time rather than number of acoustic emission events. The value of α was found to decrease systematically with increasing differential stress, and in one experiment became negative before sample failure.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Tao Qin ◽  
Hongru Sun ◽  
Heng Liu ◽  
Junwen Zhang ◽  
Tao Li ◽  
...  

A series of tests on characteristics of acoustic emission have been performed on sandstone under uniaxial, conventional, and triaxial conditions and the unloading confining pressure path. The failure mode of rock specimen has been scanned by CT and a three-dimensional reconstruction was made. The differences on characteristics of AE, mechanics, and the failure mode of sandstone during the failure process under three paths are studied. The results show that the deformation of rock specimen is bigger, and axial strain and circumferential strain have a deformation platform at peak point of stress under the unloading confining pressure path. Characteristics of AE ringing are significantly affected by the confining pressure and stress path. AE ringing counts peak value, and accumulative ringing on the breaking moment as well as cumulative release energy is higher, which indicates that the rock failure is more violent under the unloading confining pressure path. The failure mode of rock specimen was dominated by shear failure under the conventional triaxial stress path. The tension failure is the main form at a lower initial value of unloading confining pressure, and the shear failure is more prominent at a higher initial value of unloading confining pressure.


2021 ◽  
pp. 105678952199119
Author(s):  
Kai Yang ◽  
Qixiang Yan ◽  
Chuan Zhang ◽  
Wang Wu ◽  
Fei Wan

To explore the mechanical properties and damage evolution characteristics of carbonaceous shale with different confining pressures and water-bearing conditions, triaxial compression tests accompanied by simultaneous acoustic emission (AE) monitoring were conducted on carbonaceous shale rock specimens. The AE characteristics of carbonaceous shale were investigated, a damage assessment method based on Shannon entropy of AE was further proposed. The results suggest that the mechanical properties of carbonaceous shale intensify with increasing confining pressure and degrade with increasing water content. Moisture in rocks does not only weaken the cohesion but also reduce the internal friction angle of carbonaceous shale. It is observed that AE activities mainly occur in the post-peak stage and the strong AE activities of saturated carbonaceous shale specimens appear at a lower normalized stress level than that of natural-state specimens. The maximum AE counts and AE energy increase with water content while decrease with confining pressure. Both confining pressure and water content induce changes in the proportions of AE dominant frequency bands, but the changes caused by confining pressure are more significant than those caused by water content. The results also indicate that AE entropy can serve as an applicable index for rock damage assessment. The damage evolution process of carbonaceous shale can be divided into two main stages, including the stable damage development stage and the damage acceleration stage. The damage variable increases slowly accompanied by a few AE activities at the first stage, which is followed by a rapid growth along with intense acoustic emission activities at the damage acceleration stage. Moreover, there is a sharp rise in the damage evolution curve for the natural-state specimen at the damage acceleration stage, while the damage variable develops slowly for the saturated-state specimen.


Sign in / Sign up

Export Citation Format

Share Document