scholarly journals An Accurate Method for Delay Margin Computation for Power System Stability

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3466 ◽  
Author(s):  
Ashraf Khalil ◽  
Ang Swee Peng

The application of the phasor measurement units and the wide expansion of the wide area measurement units make the time delay inevitable in power systems. The time delay could result in poor system performance or at worst lead to system instability. Therefore, it is important to determine the maximum time delay margin required for the system stability. In this paper, we present a new method for determining the delay margin in the power system. The method is based on the analysis in the s-domain. The transcendental time delay characteristics equation is transformed to a frequency dependent equation. The spectral radius is used to find the frequencies at which the roots cross the imaginary axis. The crossing frequencies are determined through the sweeping test and the binary iteration algorithm. A single machine infinite bus system equipped with automatic voltage regulator and power system stabilizer is chosen as a case study. The delay margin is calculated for different values of the power system stabilizer (PSS) gain, and it is found that increasing the PSS gain decreases the delay margin. The effectiveness of the proposed method has been proved through comparing it with the most recent published methods. The method shows its merit with less conservativeness and fewer computations.

SINERGI ◽  
2018 ◽  
Vol 22 (3) ◽  
pp. 205
Author(s):  
Widi Aribowo

In this paper, a Distributed Time-Delay Neural Network (DTDNN) algorithm is used to control the Power System Stabilizer (PSS) parameters to find the reliable conditions. The proposed DTDNN algorithm apply tapped delay line memory to set the PSS. In this study, DTDNN consists of a DTDNN-identifier and a DTDNN-controller. The performance of the system with DTDNN-PSS controller is compared with a Recurrent Neural Network PSS (RNN-PSS) and Conventional PSS (C-PSS). The results show the effectiveness of DTDNN-PSS design, and superior robust performance for enhancement power system stability compared to other with different cases.


2015 ◽  
Vol 66 (2) ◽  
pp. 91-96 ◽  
Author(s):  
Navid Ghaffarzadeh

Abstract Power System Stabilizers (PSSs) are used to enhance damping of power system oscillations. This paper presents a new fast algorithm to develop PSS. According to this regard, Water Cycle Algorithm (WCA) is used to detect optimum Power System Stabilizer parameters. For this purpose, the design problem of PSS is formulated as an optimization problem and WCA by forming three subsidiary objective functions is employed to search for optimal power system stabilizer’s parameters to minimize the maximum overshoot and settling time together. In order to show the efficiency of the proposed algorithm, a comparison between WCA and without PSS condition has been done, and the results of proposed algorithm show that it detects optimum parameters in reasonable computation time to increase the power system stability.


2018 ◽  
Vol 7 (1) ◽  
pp. 67
Author(s):  
Widi Aribowo

In this paper, Power System Stabilizer is designed in Single Machine Infinite Bus (SMIB) and speed control is implemented with a dynamic topology based on Focused Time Delay Neural Network (FTDNN).  In case of prediction and control, two individual strategies are concerned for the current projects. The first is identification the dynamics of system. The other is an optimization unit expected for minimization disturbances. The performance of the system with FTDNN-PSS controller is compared with a Conventional PSS (C-PSS), RNN-PSS and DTDNN PSS. The results show the effectiveness of FTDNN-PSS design, and superior robust performance for enhancement power system stability compared to Conventional PSS with different cases.


2013 ◽  
Vol 2 (2) ◽  
pp. 32-43 ◽  
Author(s):  
Tawfiq H. Elmenfy

The use of power system stabilizers (PSSs) to damp power system swing mode of oscillations is of practical important. The authors purpose is to retune the power system stabilizer (PSS1A) parameters in Unitrol D produced by ABB– was installed in 1995 in Benghazi North Power Plants (BNPPs) at General Electricity Company of Libya (GECOL). Power systems are steadily growing with larger capacity, so the optimal values of the power system stabilizer (PSS1A) parameters should be retuned. A particle swarm optimization technique (PSO) is used to determine the parameters of the PSS off-line. The objective is to damp the local and inter-area modes of oscillations that occur following power system disturbances. The retuned power system stabilizer (PSS1A) can cope with large disturbance at different operating points and has an enhanced power system stability, The MATLAB package with SIMULINK is used for the design and simulations.


2021 ◽  
Vol 10 (5) ◽  
pp. 2384-2395
Author(s):  
Sugiarto Kadiman ◽  
Oni Yuliani ◽  
Trie Handayani

Understanding the concepts based on problem solving is not an easy methodology in teaching the impact of power systems stabilizer (PSS) on transient synchronous generator using MATLAB capability. Experiments conducted in simulating sessions play an important role in this teaching. This simulation can simulate power system stability behavior with reasonable accuracy in less time. This transient phenomenon of a power system utilizing synchronous generator and modelling by fully three-phase model with changes in stator flux linkages neglected is analyzed by employed single machine infinite bus taken to the power system. Whereas a power system stabilizer which consist of a wash-out circuit, two stages of compensation, a filter unit, and a limiter, is applied to control voltage and frequency of power systems in transient condition. Proportional-integral-derivative (PID) controller tuned by Ziegler-Nichols’s method is cascaded to conventional PSS in order to enhance the response time of system while providing a better result in damping for oscillation. This gives the clear idea about PSS and PID controller impacts on transient synchronous generator and its enhancement to the students of electrical engineering program, Institut Teknologi Nasional Yogyakarta.


2015 ◽  
Vol 781 ◽  
pp. 397-401
Author(s):  
Nur Safura Ab Khalid ◽  
Mohd Wazir Mustafa ◽  
Rasyidah Mohamed Idris

This paper presents a new approach for designing the Power System Stabilizer. As in power system network, low frequency oscillation always occurs for a long period of time that will decrease the power transfer capability. Power System Stabilizer known as PSS is being installed as one of the control devices in a generating unit. The conventional PSS (CPSS) is the most commonly used in power system, which uses lead-lag compensation. The lack in CPSS has drawn an interest of designing the new approach of PSS to outperform the conventional one. Thus, Bees Algorithm (BA) which is known as one of the numerous intelligent optimization methods is proposed in this paper. It is appears to aid the system stability by optimizing the PSS parameters tuning. The PSS with the BA approach is labelled as BA-PSS and being tested on single machine infinite bus system (SMIB) in Matlab/Simulink environment. BA-PSS performance is compared with CPSS as to validate the ability of the proposed method to achieve great performance in power system stability enhancement. Different type of mechanical input is being injected into the system and the result shows that BA-PSS is capable to optimize the parameters tuning of PSS. BA-PSS also improved the unstable or poorly stable modes as the system achieve the stability with lower overshoot and less time settling. The superior response of BA-PSS controller proved the ability of BA approach in which is capable to solve the lack in CPSS with better performance in enhancing the system stability.


2014 ◽  
Vol 1070-1072 ◽  
pp. 892-896
Author(s):  
Fu Xia Wu ◽  
Jian Rong Gong ◽  
Jun Xie ◽  
Ying Jun Wu

Power system stabilizer in a power system is a closed-loop controller. The conventional participation factor method just considers the effect of PSS input signal. When the system stress is heavier, it may give misleading results. Based on the participation factor of modal analysis, an integrative participation factor is proposed to determine the optimum PSS location. The integrative participation factor takes into account both the input and control effect of PSS controllers. The case studied in 2-area 4-generator power system power system confirms that the integrative participation factor is more reasonable and effective than the participation factor method.


Sign in / Sign up

Export Citation Format

Share Document