scholarly journals Lyapunov Stability and Performance Analysis of the Fractional Order Sliding Mode Control for a Parallel Connected UPS System under Unbalanced and Nonlinear Load Conditions

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3475 ◽  
Author(s):  
Muhammad Ali ◽  
Muhammad Aamir ◽  
Hussain Sarwar Khan ◽  
Asad Waqar ◽  
Faheem Haroon ◽  
...  

Parallel-connected uninterruptible power supply (UPS) systems have been used to maintain power supply to the critical load in order to increase power capacity and system reliability. This paper presents a robust and precise voltage control strategy for parallel-connected UPS systems. Each parallel-connected UPS system consists of a three-phase inverter with an output inductor-capacitor (LC) filter directly connected to an AC common bus in order to feed the critical load. Fractional-order sliding mode control (FOSMC) is proposed to maintain the quality of the output voltage despite linear, unbalanced and/or nonlinear load condition. The Riemann-Liouville (RL) fractional derivative is employed in designing the sliding surface. The voltage control strategy effectively eliminates the parametric uncertainties, external disturbances, and reduce the total harmonic distortion (THD) of the output voltage. Furthermore, it also maintains very good voltage regulation such as dynamic response and steady-state error under the nonlinear or unbalanced load conditions. The stability of the proposed controller is proven by applying Lyapunov stability theory. Droop control approach and virtual output impedance (VOI) loop are investigated to guarantee the accurate active and reactive power-sharing for parallel-connected UPS system. Finally, the implementation of the control scheme is carried out by using MATLAB/Simulink real-time environment.

2018 ◽  
Vol 12 (4) ◽  
pp. 3108-3119 ◽  
Author(s):  
Hamid Reza Baghaee ◽  
Mojtaba Mirsalim ◽  
Gevork B. Gharehpetian ◽  
Heidar Ali Talebi

2013 ◽  
Vol 13 (4) ◽  
pp. 139-147 ◽  
Author(s):  
Junsheng Jiao

Abstract The output voltage of Solid Oxide Fuel Cell (SOFC) is usually changed with the temperature and hydrogen flow rate. Since the fuel cell can generate a wide range of voltages and currents at the terminals, as a consequence, a constant DC voltage and function cannot be maintained by itself as a DC voltage power supply source. To solve this problem, a simple SOFC electrochemical model is introduced to control the output voltage. The Sliding Mode Control (SMC) is used to control the output voltage of the DC-DC converter for maintaining the constant DC voltage when the temperature and hydrogen flow rate are changed. By the simulation results it can be seen that the SMC technique has improved the transient response and reduced the steady state error of DC voltage.


Sign in / Sign up

Export Citation Format

Share Document