scholarly journals Assessment of Productivity and Economic Viability of Combined Food and Energy (CFE) Production System in Denmark

Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 166 ◽  
Author(s):  
Ying Xu ◽  
Lisa Mølgaard Lehmann ◽  
Silvestre García de Jalón ◽  
Bhim Bahadur Ghaley

Agro-ecosystems for integrated food, fodder, and biomass production can contribute to achieving European Union goals to increase renewable energy sources and reduce greenhouse gas emissions. The study objective was to evaluate the productivity and economic returns from a combined food and energy (CFE) system compared to sole winter wheat and sole short rotation woody crop (SRWC) production. Two excel-based models viz. Yield-SAFE and Farm-SAFE, were used to simulate agronomic productivity and economic assessment respectively. Yield-SAFE was calibrated and validated with measured data from CFE from 1996–2016. When compared over temporal scale of 21 years, CFE systems with 150–200 m alley width had the highest net present value (NPV) followed by 100 m, 50 m, sole winter wheat and sole SRWC, indicating higher profitability of CFE systems. Sensitivity analysis of NPV with ±10% yield fluctuations, and with 0–10% discount rate, demonstrated that CFE systems was more profitable than sole crops, indicating higher resilience in CFE systems. LER in CFE ranged from 1.14–1.34 indicative of higher productivity of CFE systems compared to component monocultures. Hence, the study has demonstrated that the productivity and the economic viability of CFE systems, were higher than sole crops, for informed decision making by farm managers and policy makers to contribute to renewable energy biomass production and to mitigate the impending adverse climate change effects on agricultural production.

2021 ◽  
Vol 19 ◽  
pp. 583-588
Author(s):  
Guilherme de Sousa Torres ◽  
◽  
Tulio Andre Pereira de Oliveira ◽  
Anesio de Leles Ferreira Filho ◽  
Fernando Cardoso Melo ◽  
...  

The need for a diverse energy matrix has been promoting a favorable environment for integrating new renewable energy sources, such as Concentrated Solar Power plants (CSPs). Nonetheless, as a consequence of the incipient solar generation via CSPs in Brazil, there is a unsatisfactory number of researches that handle technical and economic assessments of CSP plants performance on this country. Given this scenario, this study proposes an assessment of the technoeconomic viability of the implementation of 100 MW CSP plants in Brazil, considering the Solar Tower (ST) systems, Parabolic Trough Collectors (PTC), Linear Fresnel (LFR) Reflectors and Dish Stirling (DS) Systems, and comparing the results to a photovoltaic (PV) plant. This study utilizes project data of power plants collected from the relevant literature and applies it to the city of Bom Jesus da Lapa, Brazil. The CSP techno-economic viability is evaluated through the analysis of the annual energy generated, as well as the economic viability indicators, such as the Net Present Value, the Internal Rate of Return, the Discounted Payback and the Levelized Cost of Energy, and through a single-variable sensitivity analysis. This analysis employs the discounted cash flow model, considering the energy trade in a Regulated Contracting Environment


2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 742
Author(s):  
Grzegorz Ślusarz ◽  
Barbara Gołębiewska ◽  
Marek Cierpiał-Wolan ◽  
Jarosław Gołębiewski ◽  
Dariusz Twaróg ◽  
...  

Energy obtained from renewable sources is an important element of the sustainable development strategy of the European Union and its member states. The aim of this research is, therefore, to assess the potential and use of renewable energy sources and their effectiveness from the regional perspective in Poland. The research covered the years 2012 and 2018. The diversification of production and potential of renewable energy sources was defined on the basis of biogas and biomass. Calculations made using the data envelopment analysis (DEA) method showed that, in 2012, only three voivodeships achieved the highest efficiency in terms of the use of biogas and biomass resources; in 2018, this number increased to four. Comparing the effective units in 2012 and 2018, it can be seen that their efficiency frontier moved upwards by 56% in terms of biogas and 21% in terms of to biomass. Despite a large relative increase in the production of heat from biogas by 99% compared to the production of heat from biomass by 38%, the efficiency frontier for biogas did not change considerably. It was found that the resources of solid biomass are used far more intensively than the resources of biogas. However, in the case of biogas, a significant increase in the utilization of the production potential was observed: from 3.3% in 2012 to 6.4% in 2018, whereas in the same years, the utilization of solid biomass production potential remained at the same level (15.3% in 2012, 15.4% in 2018). It was also observed that, at the level of voivodeships, the utilization of biogas and biomass production potential is negatively correlated with the size of this potential. The combined potential of solid biomass and biogas can cover the demand of each of the studied regions in Poland in terms of thermal energy. The coverage ranges from 104% to 1402%. The results show that when comparing biomass and biogas, the production of both electricity and heat was dominated by solid biomass. Its high share occurred especially in voivodeships characterized by a high share of forest area and a low potential for biogas production (Lubuskie Voivodeship, Zachodniopomorskie Voivodeship).


2021 ◽  
pp. 130072
Author(s):  
Marija Koričan ◽  
Maja Perčić ◽  
Nikola Vladimir ◽  
Vladimir Soldo ◽  
Ivana Jovanović

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5056
Author(s):  
Tadeusz Mączka ◽  
Halina Pawlak-Kruczek ◽  
Lukasz Niedzwiecki ◽  
Edward Ziaja ◽  
Artur Chorążyczewski

Due to the increasing installed power of the intermittent renewable energy sources in the European Union, increasing the operation flexibility of the generating units in the system is necessary. This is particularly important for systems with relatively large installed power of wind and solar. Plasma technologies can be used for that purpose. Nonetheless, the wide implementation of such technology should be economically justified. This paper shows that the use of plasma systems for increasing the flexibility of power units can be economically feasible, based on the results of a net present value analysis. The cost of the installation itself had a marginal effect on the results of the net present value analysis. Based on the performed analysis, the ability to lower the technical minimum of the power unit and the relationship between such a technical minimum and the installed power of a plasma system can be considered decisive factors influencing the economics of the investment for such an installation. Further research on better means of prediction of the minimum attainable load, which would allow determining the influence of implementation of a plasma system, is recommended. This will be the decisive factor behind future decisions regarding investing in such systems.


Author(s):  
Ahmed Boubenia ◽  
Ahmed Hafaifa ◽  
Abdellah Kouzou ◽  
Mohamed Becherif

This paper deals with the techno-economic study of the hybrid renewable energy system based on energy storage aspect under the form of hydrogen and methane. Indeed, with the intermittency of the renewable energy sources such as photovoltaic and wind energy, several problems of produced energy injection to the power system network can be encountered due to the shortage or the excess of these sources. This situation appeals the use of systems that ensure the stability of network based on the storage of energy surplus into gas using electrolyzer systems, which will be used afterward to cover the eventual shortage. In the present paper, the study of performance of each pathway of methane and hydrogen storage has been performed by the treatment of multiple scenarios via different architecture case studies in an Algerian location. Whereas, the energy produced by the photovoltaic system, the wind energy and the gas micro turbine sources are considered similar in each case. The modeling and simulation of the studied system operation under optimization criteria has been performed in this work, where the main aim is to define the appropriate configuration taking into account the different with low costs of investment, maintenance operation and immediate reactivity with a big storage capacity.


2019 ◽  
Vol 10 (3) ◽  
pp. 1000 ◽  
Author(s):  
José Antonio De Miranda Lammoglia ◽  
Nilson Brandalise

A series of public policies are being adopted worldwide to seek greater participation of renewable energy sources in the energy matrix. Brazil is a country that has a predominantly renewable energy source, with hydroelectric energy being responsible for the largest portion, but with enormous potential to be exploited for solar energy. The objective of this study was to carry out an analysis of the economic viability of a photovoltaic matrix in the distributed microgeneration model from the residential consumer perspective. Through the Monte Carlo simulation, 10.000 iterations were performed and the NPV was calculated in each of them, then counted to recover the corresponding output probability distribution and verified the NPV probability to be greater than zero. The developed method has proved to be a reliable tool to support decision making and can be applied to several scenarios. The scenario adopted for the design of the photovoltaic system presented a 95.2% probability of returning with an NPV above zero and this makes it economically feasible. The main contribution of this paper is the replicability of the methodology used for other economic analysis studies.


Sign in / Sign up

Export Citation Format

Share Document