scholarly journals Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 357 ◽  
Author(s):  
Houcheng Zhang ◽  
Jiatang Wang ◽  
Jiapei Zhao ◽  
Fu Wang ◽  
He Miao ◽  
...  

By integrating an Absorption Refrigerator (AR), a new hybrid system model is established to reuse the waste heat from a Molten Carbonate Direct Carbon Fuel Cell (MCDCFC) for additional cooling production. Various irreversible losses in each element of the system are numerically described. The operating current density span of the MCDCFC that allows the AR to work is derived. Under different operating conditions, the mathematical expressions for equivalently evaluating the hybrid system performance are derived. In comparison with the stand-alone MCDCFC, the maximum attainable power density of the proposed system and its corresponding efficiency are increased by 5.8% and 6.8%, respectively. The generic performance features and optimum operating regions of the proposed system are demonstrated. A number of sensitivity analyses are performed to study the dependences of the proposed system performance on some physical parameters and operating conditions such as operating temperature, operating current density, and pressure of the MCDCFC, cyclic working fluid internal irreversibility inside the AR, thermodynamic losses related parameters and the anode thickness of the MCDCFC. The obtained results may offer some new insights into the performance improvement of an MCDCFC through a reasonable heat management methodology.

2014 ◽  
Vol 953-954 ◽  
pp. 317-320
Author(s):  
Ai Guo Liu ◽  
Bing Wang ◽  
Kai Liu ◽  
Cheng Jun Wang

The combination of biomass gasification and molten carbonate fuel/micro-gas turbine (MCFC/MGT) hybrid system offers great potential as a future sustainable power generation system. A numerical model of a 100 kW classic MCFC/MGT hybrid system using biomass syngas as fuel has been developed. The simulation was performed to investigate the influence of operation conditions and the syngas compositions on the system performance. The results show that the MCFC/MGT can keep its performance when using syngas gas as fuel which confirms the feasibility of biomass gasification-MCFC/MGT hybrid system. According to the simulation results, the increase of MGT pressure ration and MCFC inlet temperature positively affects the system performance, the fluctuation of syngas composition has little effects on the system.


Author(s):  
D. P. Bakalis ◽  
A. G. Stamatis

The objective of this work is the development of a simulation model for a hybrid Solid Oxide Fuel Cell (SOFC)/Micro Gas Turbine (MGT) system, flexible and robust enough, capable to predict the system performance under various operating conditions. The hybrid system consists of a high temperature SOFC, based on a tubular configuration developed by Siemens Power Generation Inc, and a recuperated small gas turbine (GT) validated using data for the Capstone C30. The design and off-design performance of the system is examined by means of performance maps. Moreover, operating parameters such as fuel utilization factor, steam to carbon ratio and current density are varied over a wide range and the influence on system performance is studied. The optimum operating conditions are discussed with regard to overall system performance under part load operation. The results show that high electrical efficiencies can be achieved making these systems appropriate for distributed generation applications.


Author(s):  
Huisheng Zhang ◽  
Lijin Wang ◽  
Shilie Weng ◽  
Ming Su

The intention of this work is to investigate the control characteristics of molten carbonate fuel cell hybrid systems through dynamic simulation. Because of the complexity and interaction between different components in the hybrid systems, several parameters, such as the turbine rotational speed, the temperatures within the fuel cell, the differential pressure between the anodic and the cathodic side, the steam-to-carbon ratio, need to be monitored and kept within safe limits. On the other hand, the system response to load variations is required to be as quick as possible in order to meet the energy demand. Several control loops were introduced into the hybrid system, the paper focuses on the control performance to regulate the net electrical power from the hybrid system, avoiding malfunctions or damage. The results for several operating conditions are presented and discussed.


2006 ◽  
Author(s):  
John VanOsdol ◽  
Dave Tucker

Thermodynamic efficiency must be considered in the effective analysis of gas turbine fuel cell power generation system performance. In most numerical simulations of hybrid systems, the use of compressor maps and turbine maps are neglected. It is assumed that the design criterion generated by the system model can be met by the manufacturer of these items. These system models may use partial information from a compressor map, or a turbine map, but they fail to match all the operating conditions of both maps in a hybrid configuration. Also, to simplify the calculations that are performed by the complex hybrid system models, the effects of heat transfer and fluid dynamic drag are often decoupled. When system calculations are done in this way, the resulting calculations for system efficiency may suffer error. Hybrid system designers need a simple method to calculate the system performance directly from the maps of real compressors and real turbines that currently exist, and that would be part of a hybrid system. In this work, a simple procedure is illustrated where a coupled analysis of the various system components is performed and included as part of the system model. This analysis is done using the compressor and turbine maps of the hybrid performance project hardware at the U.S. Department of Energy, National Energy Technology Laboratory (NETL). Model parameters are tuned using experimental conditions and results are obtained. The results show the importance of aerodynamic coupling in system models, and how this coupling affects the system efficiency calculations. This coupling becomes important especially for the variable density flows that are typically found in combustors, heat exchangers and fuel cells.


Author(s):  
Huisheng Zhang ◽  
Shilie Weng ◽  
Ming Su ◽  
Wenshu Zhang

The intention of this work is to investigate the control characteristics of molten carbonate fuel cell hybrid systems through dynamic simulation. Because of the complexity and interaction between different components in the hybrid systems, several parameters, such as the turbine rotational speed, the temperatures within the fuel cell, the differential pressure between the anodic and the cathodic side, and the steam-to-carbon ratio, need to be monitored and kept within safe limits. On the other hand, the system response to load variations is required to be as quick as possible in order to meet the energy demand. Several control loops were introduced into the hybrid system. This paper focuses on the control performance to regulate the net electrical power from the hybrid system, avoiding malfunctions or damage. The results for several operating conditions are presented and discussed.


Author(s):  
Mehdi Mehrpooya ◽  
Parimah Bahramian ◽  
Fathollah Pourfayaz ◽  
Hadi Katooli ◽  
Mostafa Delpisheh

Abstract The production of liquefied natural gas (LNG) is a high energy-consuming process. The study of ways to reduce energy consumption and consequently to reduce operational costs is imperative. Toward this purpose, this study proposes a hybrid system adopting a mixed refrigerant for the liquefaction of natural gas that is precooled with an ammonia/water absorption refrigeration (AR) cycle utilizing the exhaust heat of a molten carbonate fuel cell, 700°C and 2.74 bar, coupled with a gas turbine and a bottoming Brayton super-critical carbon dioxide cycle. The inauguration of the ammonia/water AR cycle to the LNG process increases the cooling load of the cycle by 10%, providing a 28.3-MW cooling load duty while having a 0.45 coefficient of performance. Employing the hybrid system reduces energy consumption, attaining 85% overall thermal efficiency, 53% electrical efficiency and 35% fuel cell efficiency. The hybrid system produces 6300 kg.mol.h−1 of LNG and 146.55 MW of electrical power. Thereafter, exergy and sensitivity analyses are implemented and, accordingly, the fuel cell had an 83% share of the exergy destruction and the whole system obtained a 95% exergy efficiency.


Sign in / Sign up

Export Citation Format

Share Document