scholarly journals Optimal Design of Wireless Charging Electric Bus System Based on Reinforcement Learning

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1229 ◽  
Author(s):  
Hyukjoon Lee ◽  
Dongjin Ji ◽  
Dong-Ho Cho

The design of conventional electric vehicles (EVs) is affected by numerous limitations, such as a short travel distance and long charging time. As one of the first wireless charging systems, the Online Electric Vehicle (OLEV) was developed to overcome the limitations of the current generation of EVs. Using wireless charging, an electric vehicle can be charged by power cables embedded in the road. In this paper, a model and algorithm for the optimal design of a wireless charging electric bus system is proposed. The model is built using a Markov decision process and is used to verify the optimal number of power cables, as well as optimal pickup capacity and battery capacity. Using reinforcement learning, the optimization problem of a wireless charging electric bus system in a diverse traffic environment is then solved. The numerical results show that the proposed algorithm maximizes average reward and minimizes total cost. We show the effectiveness of the proposed algorithm compared with obtaining the exact solution via mixed integer programming (MIP).

2017 ◽  
Vol 2647 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Zhaocai Liu ◽  
Ziqi Song ◽  
Yi He

Diesel engine buses still make up the majority of the bus fleet in the United States, even with the problem of diesel exhaust and greenhouse gas emissions. Electric buses, which generate no emissions, are a promising green alternative for bus fleets. However, electric buses have a limited travel range and a time-consuming recharging process. Dynamic wireless charging, which allows electric buses to charge while traveling, could alleviate the drawbacks of electric buses. With dynamic wireless charging technology, electric buses can operate with smaller batteries, and the stationary recharging time at the base station can be shortened. The key design variables in deploying dynamic wireless charging facilities for an electric bus system are battery size and the location of the wireless charging facilities. This paper addresses the problem of simultaneously selecting the optimal locations for the wireless charging facilities and designing the battery size for an electric bus system. A mixed integer linear program was developed to minimize the total implementation cost. The model was demonstrated with a real-world bus system. The results demonstrate that the proposed model can solve the optimal deployment problem of dynamic wireless charging facilities for an electric bus system.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6610
Author(s):  
Raka Jovanovic ◽  
Islam Safak Bayram ◽  
Sertac Bayhan ◽  
Stefan Voß

Electrifying public bus transportation is a critical step in reaching net-zero goals. In this paper, the focus is on the problem of optimal scheduling of an electric bus (EB) fleet to cover a public transport timetable. The problem is modelled using a mixed integer program (MIP) in which the charging time of an EB is pertinent to the battery’s state-of-charge level. To be able to solve large problem instances corresponding to real-world applications of the model, a metaheuristic approach is investigated. To be more precise, a greedy randomized adaptive search procedure (GRASP) algorithm is developed and its performance is evaluated against optimal solutions acquired using the MIP. The GRASP algorithm is used for case studies on several public transport systems having various properties and sizes. The analysis focuses on the relation between EB ranges (battery capacity) and required charging rates (in kW) on the size of the fleet needed to cover a public transport timetable. The results of the conducted computational experiments indicate that an increase in infrastructure investment through high speed chargers can significantly decrease the size of the necessary fleets. The results also show that high speed chargers have a more significant impact than an increase in battery sizes of the EBs.


TecnoLógicas ◽  
2019 ◽  
Vol 22 (44) ◽  
pp. 1-20 ◽  
Author(s):  
Luis Carlos Cubides ◽  
Andrés Arias Londoño ◽  
Mauricio Granada Echeverri

Logistics companies are largely encouraged to make greener their operations through an efficient solution with electric vehicles (EVs). However, the driving range is one of the limiting aspects for the introduction of EVs in logistics fleet, due to the low capacity provided by the batteries to perform the routes. In this regards, it is necessary to set up a framework to virtually increase this battery capacity by locating EV charging stations (EVCSs) along the transportation network for the completion of their routes. By the other side, the Distribution Network Operators (DNOs) express the concern associated with the inclusion of new power demands to be attended (installation of EVCSs) in the Distribution Network (DN), without reducing the optimal power supply management for the end-users. Under these circumstances, in this paper the Electric Vehicle Routing Problem with Backhauls and optimal operation of the Distribution Network (EVRPB-DN) is introduced and formulated as a mixed-integer linear programming model, considering the operation of the DN in conditions of maximum power demand. Different candidate points for the EVs charging are considered to recharge the battery at the end of the linehaul route or during the backhaul route. The problem is formulated as a multi-objective approach where the transportation and power distribution networks operation are modeled. The performance and effectiveness of the proposed formulation is tested in VRPB instance datasets and DN test systems from the literature. Pareto fronts for each instance are presented, using the ε-constraint methodology.


2015 ◽  
Vol 146 ◽  
pp. 11-19 ◽  
Author(s):  
Zicheng Bi ◽  
Lingjun Song ◽  
Robert De Kleine ◽  
Chunting Chris Mi ◽  
Gregory A. Keoleian

Author(s):  
Shyang-Chyuan Fang ◽  
Bwo-Ren Ke ◽  
Chen-Yuan Chung

The greenhouse gases and air pollution generated by extensive energy use have exacerbated climate change. An electric-bus (e-bus) transportation system favors reducing pollution and carbon emissions. This study analyzed the minimization of construction costs for an all battery-swapping public e-bus transportation system. A simulation was conducted according to existing timetables and routes. Daytime charging was incorporated during the hours of operation; the two parameters of the daytime charging scheme were the residual battery capacity and battery-charging energy during various intervals of daytime peak electricity hours. The parameters were optimized using three algorithms: particle swarm optimization (PSO), a genetic algorithm (GA), and a PSO–GA. This study observed the effects of optimization on cost changes (e.g., number of e-buses, on-board battery capacity, number of extra batteries, charging facilities, and energy consumption) and compared the plug-in and battery-swapping e-bus systems. The results revealed that daytime charging can reduce the construction costs of both systems. In contrast to the other two algorithms, the PSO–GA yielded the most favorable optimization results for the charging scheme. Finally, according to the cases investigated and the parameters of this study, the construction cost of the plug-in e-bus system was lower than that of the battery-swapping e-bus system.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2261
Author(s):  
Evgeniy Ganev ◽  
Boyan Ivanov ◽  
Natasha Vaklieva-Bancheva ◽  
Elisaveta Kirilova ◽  
Yunzile Dzhelil

This study proposes a multi-objective approach for the optimal design of a sustainable Integrated Biodiesel/Diesel Supply Chain (IBDSC) based on first- (sunflower and rapeseed) and second-generation (waste cooking oil and animal fat) feedstocks with solid waste use. It includes mixed-integer linear programming (MILP) models of the economic, environmental and social impact of IBDSC, and respective criteria defined in terms of costs. The purpose is to obtain the optimal number, sizes and locations of bio-refineries and solid waste plants; the areas and amounts of feedstocks needed for biodiesel production; and the transportation mode. The approach is applied on a real case study in which the territory of Bulgaria with its 27 districts is considered. Optimization problems are formulated for a 5-year period using either environmental or economic criteria and the remainder are defined as constraints. The obtained results show that in the case of the economic criterion, 14% of the agricultural land should be used for sunflower and 2% for rapeseed cultivation, while for the environmental case, 12% should be used for rapeseed and 3% for sunflower. In this case, the price of biodiesel is 14% higher, and the generated pollutants are 6.6% lower. The optimal transport for both cases is rail.


Sign in / Sign up

Export Citation Format

Share Document