scholarly journals Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2399 ◽  
Author(s):  
Martin Rüdisüli ◽  
Sinan L. Teske ◽  
Urs Elber

Electrifying the energy system with heat pumps and battery electric vehicles (BEV) is a strategy of Switzerland and many other countries to reduce CO2 emissions. A large electrification, however, poses several new challenges for the electricity system, particularly in combination with a simultaneous substitution of nuclear power plants (NPP) by volatile renewables such as photovoltaics (PV). In this study, these challenges in terms of additional electricity demands, deficits and surpluses as well as effective CO2 mitigation are assessed in a dynamic and data-driven approach. To this end, electricity demand and production profiles are synthesized based on measured data and specifications and assumptions of the key technologies at a high temporal resolution. The additional electricity demand of heat pumps is estimated from hourly measured heat demand profiles of a Swiss district heating provider, while for BEV different recharging patterns are combined. For electricity production, NPP are deducted from the current electricity production profile, while PV is added at an hourly resolution. In order to estimate CO2 emissions, life-cycle analysis (LCA) CO2 intensities of the different technologies are used. It is shown that with a BEV and heat pump penetration of 20% and 75%, respectively, there is an almost 25% (13.7 TWh/year) increase of the electricity demand and—just as challenging—an additional maximum power requirement of 5.9 GWh/h (hourly-averaged power). Without additional storage options, large amounts of electricity must be imported in winter and at night, while in summer at noon there is a large surplus from PV. Due to their high CO2 intensities—at least for the next decades—electricity imports and PV may—depending on the reference scenario (with or without NPP) and assumptions on other key parameters—even offset the overall CO2 savings of a highly electrified Swiss energy system.

Author(s):  
Martin Rüdisüli ◽  
Sinan L. Teske ◽  
Urs Elber

Electrifying the energy system with heat pumps and battery electric vehicles (BEV) is a strategy of Switzerland and many other countries to reduce CO$_{2}$ emissions. A large electrification, however, poses several new challenges for the electricity system, particularly in combination with a simultaneous substitution of nuclear power plants (NPP) by volatile renewables such as photovoltaics (PV). In this study, these challenges in terms of additional electricity demands, deficits and surpluses as well as effective CO$_{2}$ mitigation are assessed in a dynamic and data-driven approach. To this end, electricity demand and production profiles are synthesized based on measured data and specifications and assumptions of the key technologies at a high temporal resolution. The additional electricity demand of heat pumps is estimated from hourly measured heat demand profiles of a Swiss district heating provider, while for BEV different recharging patterns are combined. For electricity production, NPP are deducted from the current electricity production profile, while PV is added at an hourly resolution. In order to estimate CO$_{2}$ emissions, life-cycle (LCA) CO$_{2}$ intensities of the different technologies are used. It could be shown, that with a BEV and heat pump penetration of 20% and 75%, respectively, there is an almost 25% (13.7 TWh/year) increase of the electricity demand and - just as challenging - an additional maximum power requirement of 5.9 GWh/h (hourly-averaged power). Without additional storage options, large amounts of electricity must be imported in winter and at night, while in summer at noon there is a large surplus from PV. Due to their high CO$_{2}$ intensities - at least for the next decades - electricity imports and PV may - depending on the reference scenario (with or without NPP) and assumptions on other key parameters - even offset the overall CO$_{2}$ savings of a highly electrified Swiss energy system.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2165
Author(s):  
Sam Hamels

The European Union strives for sharp reductions in both CO2 emissions as well as primary energy use. Electricity consuming technologies are becoming increasingly important in this context, due to the ongoing electrification of transport and heating services. To correctly evaluate these technologies, conversion factors are needed—namely CO2 intensities and primary energy factors (PEFs). However, this evaluation is hindered by the unavailability of a high-quality database of conversion factor values. Ideally, such a database has a broad geographical scope, a high temporal resolution and considers cross-country exchanges of electricity as well as future evolutions in the electricity mix. In this paper, a state-of-the-art unit commitment economic dispatch model of the European electricity system is developed and a flow-tracing technique is innovatively applied to future scenarios (2025–2040)—to generate such a database and make it publicly available. Important dynamics are revealed, including an overall decrease in conversion factor values as well as considerable temporal variability at both the seasonal and hourly level. Furthermore, the importance of taking into account imports and carefully considering the calculation methodology for PEFs are both confirmed. Future estimates of the CO2 emissions and primary energy use associated with individual electrical loads can be meaningfully improved by taking into account these dynamics.


2012 ◽  
Vol 548 ◽  
pp. 812-816
Author(s):  
Xiao Min Chen ◽  
Xi Yan Liu

With the rapid development of Chinese economy, the thermal power requirement is increasing not only in industry but also for the civil use in recent years. In China, the main fuel of thermal power is coal. Coal handling system places the consequence in the whole generate electricity system and has significant meaning to the power plant operation. The coal handling system of the thermal power plants has many types of equipment. The environment is vile with complicated control. If we control this system through manual mode, there will appear the imponderable questions. This article through the research of the coal handling system by the management of PLC can determine the long-term safe operation and reduce a mass of human power and material resources. It has the fundamental practical meaning and research value.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5432
Author(s):  
Martina Crimmann ◽  
Reinhard Madlener

In this paper, we investigate the potentials of distributed generation (DG) in a medium-sized Swiss city. We show the role of private households in the sustainable energy transition process induced by Swiss energy policy. For the analysis, we define six scenarios that enable us to study the potentials and impacts of different combinations of DG technologies in terms of costs, CO2 emissions, and amounts and shares of DG provided by non-industrial end-users (essentially private households and the services sector). Three variants are investigated, one with real electricity costs and CO2 emissions, one with increased electricity costs (e.g., construction of new power plants), and one with increased CO2 emissions (e.g., due to the planned nuclear phase-out in Switzerland). We find that non-industrial entities can play an important role as prosumers. They mitigate the need for centralized generation. Within a scenario where the non-industrial energy end-users install water-water heat pumps and photovoltaics, a total reduction of the gas procurement from the grid is possible whereas the electricity demand from the grid increases by 24%. This scenario reveals higher DG electricity costs in comparison to conventional electricity supply, but the total costs of energy supply decrease due to the elimination of gas supply, and the CO2 emissions can be reduced by 68%.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2164
Author(s):  
Vahid Arabzadeh ◽  
Peter D. Lund

Heat demand dominates the final energy use in northern cities. This study examines how changes in heat demand may affect solutions for zero-emission energy systems, energy system flexibility with variable renewable electricity production, and the use of existing energy systems for deep decarbonization. Helsinki city (60 °N) in the year 2050 is used as a case for the analysis. The future district heating demand is estimated considering activity-driven factors such as population increase, raising the ambient temperature, and building energy efficiency improvements. The effect of the heat demand on energy system transition is investigated through two scenarios. The BIO-GAS scenario employs emission-free gas technologies, bio-boilers and heat pumps. The WIND scenario is based on large-scale wind power with power-to-heat conversion, heat pumps, and bio-boilers. The BIO-GAS scenario combined with a low heat demand profile (−12% from 2018 level) yields 16% lower yearly costs compared to a business-as-usual higher heat demand. In the WIND-scenario, improving the lower heat demand in 2050 could save the annual system 6–13% in terms of cost, depending on the scale of wind power.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3634
Author(s):  
Daniele Lerede ◽  
Chiara Bustreo ◽  
Francesco Gracceva ◽  
Yolanda Lechón ◽  
Laura Savoldi

The European Roadmap towards the production of electricity from nuclear fusion foresees the potential availability of nuclear fusion power plants (NFPPs) in the second half of this century. The possible penetration of that technology, typically addressed by using the global energy system EUROFusion TIMES Model (ETM), will depend, among other aspects, on its costs compared to those of the other available technologies for electricity production, and on the future electricity demand. This paper focuses on the ongoing electrification process of the transport sector, with special attention devoted to road transport. A survey on the present and forthcoming technologies, as foreseen by several manufacturers and other models, and an international vehicle database are taken into account to develop the new road transport module, then implemented and harmonized inside ETM. Following three different storylines, the computed results are presented in terms of the evolution of the road transport demand in the next decades, fleet composition and CO 2 emissions. The ETM results are in line with many other studies. On one hand, they highlight, for the European road transport energy consumption pattern, the need for dramatic changes in the transport market, if the most ambitious environmental goals are to be pursued. On the other hand, the results also show that NFPP adoption on a commercial scale could be justified within the current projection of the investment costs, if the deep penetration of electricity in the road transport sector also occurs.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3098
Author(s):  
Ritter ◽  
Meyer ◽  
Koch ◽  
Haller ◽  
Bauknecht ◽  
...  

In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued delays would have when compared to a strong interconnector expansion in an ambitious energy transition scenario. For this purpose, scenarios for the years 2030, 2040, and 2050 are examined using the electricity market model PowerFlex EU. The analysis reveals that both CO2 emissions and variable costs of electricity generation increase if interconnector expansion is delayed. This effect is most significant in the scenario year 2050, where lower connectivity leads roughly to a doubling of both CO2 emissions and variable costs of electricity generation. This increase results from a lower level of European electricity trading, a curtailment of electricity from a renewable energy source (RES-E), and a corresponding higher level of conventional electricity generation. Most notably, in Southern and Central Europe, less interconnection leads to higher use of natural gas power plants since less renewable electricity from Northern Europe can be integrated into the European grid.


2021 ◽  
Vol 19 ◽  
pp. 609-613
Author(s):  
O. Cabeza-Gras ◽  
◽  
V. Jaramillo-García ◽  

In this communication we present the construction of a wind farm, WF, with 10 MW of nominal power. This WF will increase the quantity and quality of electricity in the area of Ambocas, Loja, Ecuador, strengthen a system with many voltage drops. The place chosen is ideal, because it is long from population, in a hill side near an existing road. Wind is persistent and has a constant orientation all along the year. The generated power will be connected with the electricity system in the Portovelo Substation, which is about 12 km from the WF site. We have calculated the expected electricity production all along the year taking into account all important data to simulate successfully the WF operation in real conditions. We have also modelled the interconnexion of the WF with the substation and its effect in the 69 kV bar. Finally, a brief economical analysis of the project gives an annual average profit higher than 3.5 USD million without taxes, while the inversion would be cancelled in less than 5 years of the 20 ones planned for the WF in full operation.


2019 ◽  
Vol 1 (3) ◽  
pp. 174-180 ◽  
Author(s):  
Bandiyah Sri Aprillia ◽  
Desri Kristina Silalahi ◽  
Muhammad Agung Foury Rigoursyah

Electricity demand increases along with an increasing population. Renewable energy power plants are experiencing an increase in their use. This increase occurred because the world's electricity needs are rising every year, so the development of renewable energy power plants continues. Indonesia's state-owned power plants supply electricity more from non-renewable energy sources than renewable energy sources. Therefore, there is a need for renewable energy sources that can supply electricity in Indonesia. This research discusses an efficient renewable energy system for residential and the total installation costs for on-grid systems in Bandung, Indonesia. The research method used is collecting solar radiation data, equipment specifications and other data needed and then optimized. The simulation model uses HOMER software. HOMER is used to determine the best technically estimated cost, payback period, and NPC. Based on the optimization results, the system configuration can supply the electricity load 45.5% of daily load consumption with a total NPC cost is 75,300,000 million with a payback period of 7 years. In addition, the on-grid system produces 1400 kg of carbon dioxide (CO2) emissions per year from diesel generators, lower than the CO2 emissions from systems that only comprise diesel generators reaching 114 tons per year.    


Author(s):  
Gianfranco Guidati ◽  
Domenico Giardini

Near-to-surface geothermal energy with heat pumps is state of the art and is already widespread in Switzerland. In the future energy system, medium-deep to deep geothermal energy (1 to 6 kilometres) will, in addition, play an important role. To the forefront is the supply of heat for buildings and industrial processes. This form of geothermal energy utilisation requires a highly permeable underground area that allows a fluid – usually water – to absorb the naturally existing rock heat and then transport it to the surface. Sedimentary rocks are usually permeable by nature, whereas for granites and gneisses permeability must be artificially induced by injecting water. The heat gained in this way increases in line with the drilling depth: at a depth of 1 kilometre, the underground temperature is approximately 40°C, while at a depth of 3 kilometres it is around 100°C. To drive a steam turbine for the production of electricity, temperatures of over 100°C are required. As this requires greater depths of 3 to 6 kilometres, the risk of seismicity induced by the drilling also increases. Underground zones are also suitable for storing heat and gases, such as hydrogen or methane, and for the definitive storage of CO2. For this purpose, such zones need to fulfil similar requirements to those applicable to heat generation. In addition, however, a dense top layer is required above the reservoir so that the gas cannot escape. The joint project “Hydropower and geo-energy” of the NRP “Energy” focused on the question of where suitable ground layers can be found in Switzerland that optimally meet the requirements for the various uses. A second research priority concerned measures to reduce seismicity induced by deep drilling and the resulting damage to buildings. Models and simulations were also developed which contribute to a better understanding of the underground processes involved in the development and use of geothermal resources. In summary, the research results show that there are good conditions in Switzerland for the use of medium-deep geothermal energy (1 to 3 kilometres) – both for the building stock and for industrial processes. There are also grounds for optimism concerning the seasonal storage of heat and gases. In contrast, the potential for the definitive storage of CO2 in relevant quantities is rather limited. With respect to electricity production using deep geothermal energy (> 3 kilometres), the extent to which there is potential to exploit the underground economically is still not absolutely certain. In this regard, industrially operated demonstration plants are urgently needed in order to boost acceptance among the population and investors.


Sign in / Sign up

Export Citation Format

Share Document