scholarly journals Study on Riblet Drag Reduction Considering the Effect of Sweep Angle

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3386 ◽  
Author(s):  
Yufei Zhang ◽  
Yuhui Yin

This study computationally evaluates the riblet drag reduction effect considering the effect of sweep angle. An implicit large eddy simulation is performed on a channel flow and an infinite swept wing. First, three different inclined angles between the riblets and the flow direction are tested in the channel flow. The results show that with increases in the inclined angle, the friction drag decreases, while the pressure drag increases approximately quadratically. The riblets with a 30° inclined angle increase the total drag of the channel flow. Then, an infinite wing with a 30° swept angle with and without riblets is studied. The riblets demonstrate satisfactory drag reduction efficiency because the cross flow over most parts of the wing is mild. The lift and friction drag follow the relation of the cosine law of a swept wing. Moreover, the cross flow and the turbulence fluctuation are suppressed by the riblets.

Author(s):  
Susan B. Swithenbank ◽  
Carl Martin Larsen

Most empirical codes for prediction of vortex-induced vibrations (VIV) has so far been limited to cross-flow response. The reason for this is that cross-flow amplitudes are normally larger that in-line amplitudes. Additionally the in-line response is considered to be driven by the cross-flow vibrations. However since the in-line frequency is twice the cross-flow frequency, fatigue damage from in-line vibrations may become as important and even exceed the damage from cross-flow vibrations. A way to predict in-line vibrations is to apply traditional methods that are used for cross-flow VIV and establish an empirical relationship between the cross-flow and in-line response. Previous work suggests that the ratio between the in-line and cross-flow amplitudes depends on the cross-flow mode number, Baarhom et al. (2004), but the empirical basis for this hypothesis is not strong. The motivation for the present work has been to verify or modify this hypothesis by extensive analysis of observed response. The present analysis uses complex data from experiments with wide variations in the physical parameters of the system, including length-to-diameter ratios from 82 to 4236, tension dominated natural frequencies and bending stiffness dominated natural frequencies, sub-critical and critical Reynolds numbers, different damping coefficients, uniform and sheared flows, standing wave and traveling wave vibrations, mode numbers from 1–25th, and different mass ratios. The conclusion from this work is that the cross-flow mode number is not the important parameter, but whether the frequency of vibration in the cross-flow direction is dominated by bending stiffness of tension.


2016 ◽  
Vol 793 ◽  
pp. 162-208 ◽  
Author(s):  
V. I. Borodulin ◽  
A. V. Ivanov ◽  
Y. S. Kachanov ◽  
A. P. Roschektaev

This paper is devoted to an experimental investigation of receptivity of a laminar swept-wing boundary layer due to scattering of free-stream vortices on localized (in the streamwise direction) surface vibrations. The experiments were conducted under completely controlled disturbance conditions by means of a hot-wire anemometer on a model of a swept wing with a sweep angle of 25°. Both the free-stream vortices and the surface vibrations were generated by disturbance sources; their frequency–wavenumber spectra were measured thoroughly. The free-stream vorticity vectors were directed perpendicular to the incident-flow velocity vector and parallel to the swept-wing-model surface. The linearity of the receptivity mechanism under investigation (in a sense that the corresponding receptivity coefficients are independent of the disturbances amplitudes) has been checked carefully. The main goal of this experiment was to estimate the vibration-vortex receptivity coefficients as functions of the disturbance frequency, spanwise wavenumber and vortex offset parameter. This goal has been attained. Being defined in Fourier space, the obtained receptivity coefficients are independent of the specific surface vibration shape and can be used for verification of various receptivity theories.


Author(s):  
Gustavo R. S. Assi ◽  
Peter W. Bearman

Experiments have been carried out on two-dimensional devices fitted to a rigid length of circular cylinder to investigate the efficiency of pivoting parallel plates as wake-induced vibration suppressors. Measurements are presented for a circular cylinder with low mass and damping which is free to respond in the cross-flow direction. It is shown how VIV and WIV can be practically eliminated by using free to rotate parallel plates on a pair of tandem cylinders. Unlike helical strakes, the device achieves VIV suppression with 33% drag reduction when compare to a pair of fixed tandem cylinders at the same Reynolds number. These results prove that suppressors based on parallel plates have great potential to suppress VIV and WIV of offshore structures with considerable drag reduction.


2015 ◽  
Vol 26 (5) ◽  
pp. 795-819
Author(s):  
P. E. WESTWOOD ◽  
F. T. SMITH

The theoretical investigation here of a three-dimensional array of jets of fluid (air guns) and their interference is motivated by applications to the food sorting industry especially. Three-dimensional motion without symmetry is addressed for arbitrary jet cross-sections and incident velocity profiles. Asymptotic analysis based on the comparatively long axial length scale of the configuration leads to a reduced longitudinal vortex system providing a slender flow model for the complete array response. Analytical and numerical studies, along with comparisons and asymptotic limits or checks, are presented for various cross-sectional shapes of nozzle and velocity inputs. The influences of swirl and of unsteady jets are examined. Substantial cross-flows are found to occur due to the interference. The flow solution is non-periodic in the cross-plane even if the nozzle array itself is periodic. The analysis shows that in general the bulk of the three-dimensional motion can be described simply in a cross-plane problem but the induced flow in the cross-plane is sensitively controlled by edge effects and incident conditions, a feature which applies to any of the array configurations examined. Interference readily alters the cross-flow direction and misdirects the jets. Design considerations centre on target positioning and jet swirling.


1998 ◽  
Vol 358 ◽  
pp. 245-258 ◽  
Author(s):  
CHANGHOON LEE ◽  
JOHN KIM ◽  
HAECHEON CHOI

Two simple feedback control laws for drag reduction are derived by applying a suboptimal control theory to a turbulent channel flow. These new feedback control laws require pressure or shear-stress information only at the wall, and when applied to a turbulent channel flow at Reτ=110, they result in 16–22% reduction in the skin-friction drag. More practical control laws requiring only the local distribution of the wall pressure or one component of the wall shear stress are also derived and are shown to work equally well.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1530
Author(s):  
Makhsuda Juraeva ◽  
Dong-Jin Kang

A new passive micro-mixer with mixing units stacked in the cross flow direction was proposed, and its performance was evaluated numerically. The present micro-mixer consisted of eight mixing units. Each mixing unit had four baffles, and they were arranged alternatively in the cross flow and transverse direction. The mixing units were stacked in four different ways: one step, two step, four step, and eight step stacking. A numerical study was carried out for the Reynolds numbers from 0.5 to 50. The corresponding volume flow rate ranged from 6.33 μL/min to 633 μL/min. The mixing performance was analyzed in terms of the degree of mixing (DOM) and relative mixing energy cost (MEC). The numerical results showed a noticeable enhancement of the mixing performance compared with other micromixers. The mixing enhancement was achieved by two flow characteristics: baffle wall impingement by a stream of high concentration and swirl motion within the mixing unit. The baffle wall impingement by a stream of high concentration was observed throughout all Reynolds numbers. The swirl motion inside the mixing unit was observed in the cross flow direction, and became significant as the Reynolds number increased to larger than about five. The eight step stacking showed the best performance for Reynolds numbers larger than about two, while the two step stacking was better for Reynolds numbers less than about two.


Sign in / Sign up

Export Citation Format

Share Document