scholarly journals Research on Multifunctional High-Power Grid Source Simulator System with Synchronous Generator, Line Impedance Imitation, and ZIP Load Emulator

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4657
Author(s):  
Hong Zhu ◽  
Xing Zhang ◽  
Ming Li ◽  
Xiaoxi Liu

As the penetration of distributed power sources in the power grid is getting higher and higher, the adverse effects are also increasing. It is necessary to adopt control technology to make the distributed power source participate in the power regulation of the power system. In this paper, a multifunctional high-power grid source simulator system is presented. For wider control bandwidth and better performance, a high-power, back-to-back converter and an auxiliary lower-power, back-to-back converter connected in cascade mode topology is proposed in this paper. The basic principle and implementation method of virtual synchronous generator (VSG) in the high-power, back-to-back converter are described to reflect the same power frequency characteristics and voltage regulation characteristics as synchronous generators. Amplitude closed-loop control is proposed to realize zero steady-state error in the lower-power, back-to-back converter, also with line impedance imitation. Meanwhile, a constant-impedance, constant-current, and constant-power (ZIP) load model is used to emulate static load in the grid simulator system. At last, a set of experimental results for a 2 MW grid simulator system is provided to verify the effectiveness and validity of the proposed approach.

Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


2013 ◽  
Vol 709 ◽  
pp. 408-412
Author(s):  
Yan Ling Zhao ◽  
Rong Xing Liu

Abstract. A mid-frequency magnetron sputtering (MFMS) power supply based on TL494 and MCU was introduced. A Buck Chopper and full bridge inverter were applied to the main circuit. The PWM controller TL494 was used in the Buck voltage-regulation control circuit to realize closed loop control. The drive signal of the IGBT in full bridge inverter was based on precise digital pulse width modulator (DPWM) signal produced by the MCU M30290. The DPWM can be set by potentiometer so the power supply can output the square wave with adjustable frequency and duty cycle. The power supply was operated in constant current mode. For micro or strong arcing of the target, different safeguards were adopted by the control circuit. At last, the system test and experimental results show that the stability, reliability and tuning range of the MFMS power supply can meet the requirements of the magnetron sputtering coating.


2021 ◽  
Vol 2143 (1) ◽  
pp. 012028
Author(s):  
Jiangfeng Zhang ◽  
Ye Su ◽  
Keke Zheng ◽  
Liyun Hua

Abstract With people’s attention to environmental protection, clean energy has become an important research and development direction. Among them, photovoltaic power generation has many advantages, such as simple process, no fuel consumption, no noise, no pollution and so on. The power grid capacity is becoming larger and larger, and has a great impact on the environment. Therefore, the grid connection of photovoltaic power generation will cause major problems for the planning, operation and dispatching of power grid. Virtual synchronous generator (hereinafter referred to as VSG) technology can simulate the inertia, primary frequency regulation and voltage regulation characteristics of synchronous generator, which has become an important way to improve the dynamic frequency response ability of the system. Therefore, VSG technology has become an important research technology of photovoltaic grid connected system, among which FM method will also become an important research direction. Firstly, this paper analyzes the VSG algorithm and its basic characteristics. Finally, this paper analyzes the control scheme of overall primary frequency regulation of photovoltaic power station (hereinafter referred to as PPS).


2015 ◽  
Vol 63 (3) ◽  
pp. 575-582 ◽  
Author(s):  
S. Berhausen ◽  
S. Paszek

Abstract The paper presents the two-dimensional, field-circuit model of a high power synchronous generator verified by measurements. The model enables determining the waveforms of electromagnetic quantities in steady and transient states. Verification of the model was based on comparison of the measured and calculated waveforms after a disturbance in the voltage regulation system of a TWW-200-2 generator operating in Połaniec Power Plant. There are also presented the field methods for determining electromagnetic parameters (synchronous reactances and time constants) when using the distributions of static and quasi-static, magnetic and electromagnetic fields calculated by the finite element method (FEM). The set of these parameters was used as the starting parameters of the optimization algorithm for estimation of electromagnetic parameters of the synchronous generator circuit model. The dynamic waveforms under the generator load conditions calculated by the finite element method are the basis of parameter estimation. The parameter estimation of the generator model was performed with the use of the least squares method.


2016 ◽  
Vol 17 (5) ◽  
pp. 541-546 ◽  
Author(s):  
Helmy M. El-Zoghby ◽  
Ahmed F. Bendary

Abstract In this paper Static Synchronous Compensator (STATCOM) is used for improving the performance of the power grid with wind turbine that drives synchronous generator. The main feature of the STATCOM is that it has the ability to absorb or inject rapidly reactive power to grid. Therefore the voltage regulation of the power grid with STATCOM device is achieved. STATCOM also improves the stability of the power system after occurring severe disturbance such as faults, or suddenly step change in wind speed. The proposed STATCOM controller is a Proportional-Integral (PI) controller tuned by Genetic Algorithm (GA). An experimental model was built in Helwan University to the proposed system. The system is tested at different operating conditions. The experimental results prove the effectiveness of the proposed STATCOM controller in damping the power system oscillations and restoring the power system voltage and stability.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 366
Author(s):  
Yuko Hirase ◽  
Kazusa Uezaki ◽  
Dai Orihara ◽  
Hiroshi Kikusato ◽  
Jun Hashimoto

As distributed power sources via grid-connected inverters equipped with functions to support system stabilization are being rapidly introduced, individual systems are becoming more complex, making the quantification and evaluation of the stabilizing functions difficult. Therefore, to introduce distributed power sources and achieve stable system operation, a system should be reduced to a necessary but sufficient size in order to enable the quantification of its behavior supported by transient theory. In this study, a system in which multiple distributed power supplies equipped with virtual synchronous generator control are connected is contracted to a two-machine system: a main power supply and all other power supplies. The mechanical torque of each power supply is mathematically decomposed into inertia, damping, synchronization torques, and the governor effect. The system frequency deviations determined by these elements are quantitatively indexed using MATLAB/Simulink. The quantification index displayed in three-dimensioned graphs illustrates the relationships between the various equipment constants of the main power supply, the control variables of the grid-connected inverter control, and the transient time series. Moreover, a stability analysis is performed in both the time and frequency domains.


Author(s):  
Sinu KJ ◽  
G. Ranganathan

<p>This paper presents a new hydro energy based dc-dc PFC sepic based buck converter for marine lighting applications. The major advantage of the proposed power converter is high power factor and low THD with higher efficiency. SEPIC converter produces continuous smooth ripple free current because of two inductors in series in line in its circuit. Sepic converter produces lower switching losses because of lower voltage stress on power switch employed compared to other buck-boost converter topologies. Tidal wave energy is converted into mechanical energy with the help of a hydro turbine which drives a permanent magnet synchronous generator to produce three phase ac output voltage. It produces a low ac voltage which is converted into DC using passive diode rectifier and fed to sepic converter for voltage regulation as well as to improve quality of power supply such as high power factor, low THD. The proposed sepic based power converter for marine lighting application is simulated in MATLAB/Simulink environment for verifying the performance of proposed scheme.</p>


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5022 ◽  
Author(s):  
Yusheng Sun ◽  
Yaqian Zhao ◽  
Zhifeng Dou ◽  
Yanyan Li ◽  
Leilei Guo

As much wind power is integrated into the power grid through power electronic equipment, the use of wind power is increased rapidly. Wind power system makes the power grid lack inertia and damping, thereby reducing power grid stability; in severe cases, it may even be disconnected. virtual synchronous generator (VSG) has been put forward to enhance the anti-disturbance performance of power grid. However, conventional VSG adopts an outer power loop and inner-current loop control. The inner-current loop control needs a pulse width modulation (PWM) module and proportion integration (PI) parameter settings. In order to reduce the parameter settings and simplify control structures, in this study, model predictive control (MPC) is used instead of inner-current loop control. At the same time—for the overall stability and control flexibility of the back-to-back system—we further propose to use outer-voltage loop control (OVLC) and MPC to stabilize direct current (DC) voltage on the machine-side and to employ model predictive virtual synchronous controls to provide inertia and damping for the power grid. The proposed control method was simulated in Matlab/Simulink (MathWorks, Massachusetts, MA, 2016) and verified by experimental results.


2014 ◽  
Vol 654 ◽  
pp. 238-241
Author(s):  
Jian Tang ◽  
Yue Nan Zeng ◽  
Bin Zhou ◽  
Jin Hui Liu

Based on voltage space vector modulation, a distributed power grid-connected inverter (DPGCI) utilizing double loop control strategy is researched, the system is able to feedback power to grid with constant power and unity power factor. the static and dynamic performance is good. Firstly, a mathematical model of inverter system in two-phase synchronous rotating coordinate is built, based on this, a outer power loop and inner current loop control strategy is proposed, realizing the independent control of active and reactive power. Experimental results show the correctness and validity of the control strategy.


Sign in / Sign up

Export Citation Format

Share Document